
Package: certeprojects (via r-universe)
October 31, 2024

Title A Certe R Package for Department Projects

Version 1.21.8

Description A Certe R Package with functions to automate department
projects using MS Teams, MS Planner, Shiny, R Markdown and
Quarto. This package is part of the 'certedata' universe.

URL https://certe-medical-epidemiology.github.io/certeprojects,

https://github.com/certe-medical-epidemiology/certeprojects

Depends R (>= 4.1.0)

Imports certestyle, callr (>= 3.7.0), AzureAuth (>= 1.3.0), AzureGraph
(>= 1.3.0), dplyr (>= 1.0.0), httr (>= 1.4.0), jsonlite (>=
1.7.2), Microsoft365R (>= 2.4.0), miniUI (>= 0.1.1), pins (>=
1.1.0), quarto (>= 1.2.0), rstudioapi (>= 0.10), shiny (>=
1.6.0), shinyjs (>= 2.0.0), shinyWidgets (>= 0.6.2), yaml (>=
2.2.0)

Suggests certetoolbox, certemail, clipr (>= 0.8.0), lubridate (>=
1.9.0), msgxtractr, rlang (>= 1.1.0), rmarkdown, rvest,
testthat (>= 2.0.0)

License GPL-2

Encoding UTF-8

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.2

Config/testthat/edition 2

Repository https://certe-medical-epidemiology.r-universe.dev

RemoteUrl https://github.com/certe-medical-epidemiology/certeprojects

RemoteRef HEAD

RemoteSha ddc127cdc93ccb97d0f8c6bfba3562d9b29b9e99

1

https://certe-medical-epidemiology.github.io/certeprojects
https://github.com/certe-medical-epidemiology/certeprojects

2 connect

Contents

connect . 2
get_azure_property . 4
knit . 4
pins . 5
planner . 6
project_add . 11
project_properties . 12
schedule_task . 14
teams . 16

Index 22

connect Connect to Microsoft 365

Description

These functions create a connection to Microsoft 365 and saves the connection to the certeprojects
package environment. The planner_*() and teams_*() functions allow to work with these con-
nections.

Usage

get_microsoft365_token(
scope = read_secret("azure.scope_list"),
tenant = read_secret("azure.tenant"),
app_id = read_secret("azure.app_id"),
auth_type = read_secret("azure.auth_type"),
...,
overwrite = TRUE,
error_on_fail = TRUE

)

connect_outlook(email = read_secret("department.mail"), overwrite = FALSE, ...)

connect_planner(
plan = read_secret("planner.name"),
team_name = read_secret("team.name"),
overwrite = FALSE,
...

)

connect_teams(team_name = read_secret("team.name"), overwrite = FALSE, ...)

connect 3

Arguments

scope any (combination) of "outlook", "teams", "planner", "tasks" (which is "planner"
without group rights), or "sharepoint". Can also be a manual vector of Microsoft
Permissions, such as "User.Read.

tenant the tenant to use, passed on to AzureGraph::create_graph_login()

app_id the Azure app id to use, passed on to AzureGraph::create_graph_login()

auth_type the authentication method to use, passed on to AzureGraph::create_graph_login()

... arguments passed on to get_microsoft365_token()

overwrite a logical to overwrite an existing connection, useful for switching accounts
error_on_fail a logical to indicate whether an error must be thrown if no connection can be

made
email email address of the user, or a shared mailbox
plan name of the team’s plan if team_name is not empty. Otherwise, a plan ID (for

individual use).
team_name name of the team, can be left blank to connect to an individual planner

Details

Microsoft Outlook:
To switch between different Outlook accounts, run connect_outlook() with another email ad-
dress, and set overwrite = TRUE. This will allow all certemail functions to use the newly set
account.

at default connects to the department mailbox:
connect_outlook()
afterwards, this does nothing since `overwrite` is not set:
connect_outlook("user@certe.nl")
this switches to the user account:
connect_outlook("user@certe.nl", overwrite = TRUE)

Using overwrite is needed, because running just connect_outlook() afterwards again (which
many certemail functions do) will otherwise change back to the default account.

Microsoft Planner:
To connect to MS Planner with a personal account, retrieve the plan ID (e.g., from the URL of the
plan), and pass it on to connect_planner() as plan, and set overwrite = TRUE over replace an
existing connection. Make sure that team_name is left blank:

connect_planner(plan = "AAA-0aa0AaAa-aaaAAAAAAAa", team_name = NULL, overwrite = TRUE)

Microsoft Teams:
Connecting to MS Teams can only be done on the group (= team) level. It is not possible to set
up a connection without a valid team name.

Pre-loaded Settings:
When attaching this certeprojects package using library(), and external R process will be
run in the background using the callr package to connect to MS Outlook, MS Planner, and MS
Teams. This will increase speed when connecting using connect_outlook(), connect_planner(),
or connect_teams().

4 knit

get_azure_property Get Azure Property

Description

This function retrieves a property from an Azure object, such as ms_plan, ms_plan_task, ms_team,
ms_team_member, ms_drive_item.

Usage

get_azure_property(x, property)

Arguments

x an Azure object

property the name of the property, such as "id" or "displayName". This must exist in x
or in x$properties, and will return NA otherwise.

knit Knit R Markdown or Quarto Document

Description

Allows Quarto to work with full paths (where Quarto itself requires relative paths) and replaces
both rmarkdown::render() and quarto::quarto_render().

Usage

knit(input_file, output_file = NULL, quiet = TRUE, as_job = "auto", ...)

render(input_file, output_file = NULL, quiet = TRUE, as_job = "auto", ...)

Arguments

input_file file to be rendered, can be R Markdown (.Rmd) or Quarto (.qmd), or a lot of other
formats such as .md, .ipynb and many other formats that Quarto supports.

output_file The name of the output file. If using NULL, the output filename will be based on
the filename for the input file. output_file is mapped to the --output option
flag of the quarto CLI. It is expected to be a filename only, not a path, relative
or absolute.

quiet Suppress warning and other messages.

as_job Render as an RStudio background job. Default is "auto", which will ren-
der individual documents normally and projects as background jobs. Use the
quarto.render_as_job R option to control the default globally.

... other arguments passed on to quarto::quarto_render().

https://quarto.org/docs/reference/

pins 5

Details

Functions knit() and render() are identical.

pins Work with Pins

Description

These functions can be used to work with pins, developed by RStudio.

Usage

export_pin(
x,
name = NULL,
title = NULL,
type = NULL,
description = NULL,
board = pins_board()

)

import_pin(name, version = NULL, hash = NULL, board = pins_board())

remove_pin(name, version = NULL, board = pins_board())

pins_board(
projects_channel_id = read_secret("teams.projects.channel_id"),
account = connect_teams(),
delete_by_item = TRUE

)

Arguments

x An object (typically a data frame) to pin.

name Pin name.

title A title for the pin; most important for shared boards so that others can understand
what the pin contains. If omitted, a brief description of the contents will be
automatically generated.

type File type used to save x to disk. Must be one of "csv", "json", "rds", "parquet",
"arrow", or "qs". If not supplied, will use JSON for bare lists and RDS for
everything else. Be aware that CSV and JSON are plain text formats, while
RDS, Parquet, Arrow, and qs are binary formats.

description A detailed description of the pin contents.

board A pin board, created by board_folder(), board_connect(), board_url() or
another board_ function.

https://pins.rstudio.com
https://CRAN.R-project.org/package=qs

6 planner

version Retrieve a specific version of a pin. Use pin_versions() to find out which
versions are available and when they were created.

hash Specify a hash to verify that you get exactly the dataset that you expect. You
can find the hash of an existing pin by looking for pin_hash in pin_meta().

projects_channel_id

Teams channel ID of the projects

account a Microsoft 365 account to use for looking up properties. This has to be an
object as returned by connect_teams() or Microsoft365R::get_team().

delete_by_item Whether to handle folder deletions on an item-by-item basis, rather than deleting
the entire folder at once. You may need to set this to TRUE for a board in Share-
Point Online or OneDrive for Business, due to document protection policies that
prohibit deleting non-empty folders.

Details

These functions from the pins package are integrated into the team’s Microsoft 365 account, using
the "pins" folder in the given MS Teams channel.

For Pins functions of the pins package, use pins_board() as input, e.g.:

pin_list(pins_board())

The following pins functions are re-exported by this package: pin_list(), pin_meta(), and
pin_versions().

The pins_board() function returns a pins::board_ms365 object based on the "pins" folder in the
Teams channel Projects, which is retrieved with teams_projects_channel().

planner Connect to Microsoft Planner via Microsoft 365

Description

These functions use the connection to Microsoft Planner set up with connect_planner().

Usage

planner_browse(account = connect_planner())

planner_bucket_create(bucket_name, account = connect_planner())

planner_buckets_list(account = connect_planner(), plain = FALSE)

planner_task_create(
title,
description = NULL,
startdate = NULL,

https://pins.rstudio.com

planner 7

duedate = NULL,
requested_by = NULL,
priority = read_secret("planner.default.priority"),
checklist_items = NULL,
categories = NULL,
assigned = NULL,
bucket_name = read_secret("planner.default.bucket"),
attachment_urls = NULL,
account = connect_planner(),
project_number = planner_highest_project_id() + 1,
consult_number = planner_highest_consult_id() + 1

)

planner_task_update(
task,
title = NULL,
description = NULL,
startdate = NULL,
duedate = NULL,
priority = NULL,
checklist_items = NULL,
categories = NULL,
categories_keep = FALSE,
assigned = NULL,
assigned_keep = FALSE,
bucket_name = NULL,
percent_completed = NULL,
attachment_urls = NULL,
account = connect_planner()

)

planner_tasks_list(
account = connect_planner(),
plain = FALSE,
include_completed = TRUE

)

planner_task_search(
search_term = ".*",
limit = 50,
include_completed = TRUE,
include_description = FALSE,
account = connect_planner()

)

planner_task_find(task, account = connect_planner())

planner_categories_list(account = connect_planner())

8 planner

planner_retrieve_project_id(task, account = connect_planner())

planner_task_request_validation(
task,
category_text = read_secret("planner.label.authorise"),
account = connect_planner()

)

planner_task_validate(
task,
category_text = read_secret("planner.label.authorised"),
account = connect_planner()

)

planner_create_project_from_path(
path,
projects_path = read_secret("projects.path"),
account = connect_planner(),
title = basename(path),
...

)

planner_user_property(
user,
team_name = read_secret("team.name"),
account = connect_planner(),
property = "id",
as_list = FALSE

)

planner_highest_project_id(
task = read_secret("planner.dummy.project.id"),
account = connect_planner()

)

planner_highest_consult_id(
task = read_secret("planner.dummy.consult.id"),
account = connect_planner()

)

S3 method for class 'ms_object'
as.data.frame(
x,
row.names = NULL,
optional = FALSE,
account = connect_planner(),
...

planner 9

)

S3 method for class 'ms_object'
as_tibble(x, account = connect_planner(), ...)

Arguments

account a Microsoft 365 account to use for looking up properties. This has to be an object
as returned by connect_planner() or via AzureGraph::create_graph_login()$get_group(name)$get_plan(plan_title).

bucket_name name of the bucket

plain return as plain names, not as Azure objects

title title of the task

description a description for the task. A vector of length > 1 will be added as one text
separated by white lines.

startdate a date to use as start date, use FALSE to remove it

duedate a date to use as due date, use FALSE to remove it

requested_by name of the person(s) who requested the task, this will be added as first line to
description

priority a priority to set. Can be ranged between 0 (highest) and 10 (lowest), or: "urgent"
or "dringend" for 1, "important" or "belangrijk" for 3, "medium" or "gemiddeld"
or FALSE for 5, "low" or "laag" for 9. Priorities cannot be removed - the default
setting is 5.

checklist_items

character vector of checklist items

categories names of categories to add, can be multiple, but must exactly match existing
category names

assigned names of members within the plan - use NULL to not add members in planner_task_create(),
and use FALSE to remove all existing members in planner_task_update()

attachment_urls

URLs to add as attachment, can be named characters to give the URLs a title. If
they are Excel, PowerPoint or Word files, a preview will be shown on the task.

project_number the new project number to assign. Use NULL or FALSE to not assign a project
number. Defaults to the currently highest project ID + 1.

consult_number the new consult number to assign. Use NULL or FALSE to not assign a consult
number. Defaults to the currently highest consult ID + 1.

task exact task ID or title, will be searched with %like%

categories_keep

add categories that are set in categories instead of replacing them, defaults to
FALSE

assigned_keep add members that are set in assigned instead of replacing them, defaults to
FALSE

percent_completed

percentage of task completion between 0-100

10 planner

include_completed

also search completed tasks

search_term search term, can contain a regular expression. When searching for project num-
bers (such as "p201 - Some text", or "p201" or "201"), only titles will be searched
for the project number.

limit maximum number of tasks to show
include_description

also search the description, which requires additional queries and lowers speed

category_text text of the category to use

path location of the folder that has to be converted to a project. This folder will be
renamed to contain the new project number.

projects_path location of the folder that contains all department projects

... arguments passed on to planner_task_create()

user a user name, mail adress, or Certe login name

team_name name of the team, can be left blank to connect to an individual planner

property property to return, can be "id", "name" or "mail"

as_list return the full list of members as list, split into Eigenaars (Owners) / Leden
(Members). This ignores user.

x an ms_object

row.names NULL or a character vector giving the row names for the data frame. Missing
values are not allowed.

optional logical. If TRUE, setting row names and converting column names (to syntac-
tic names: see make.names) is optional. Note that all of R’s base package
as.data.frame() methods use optional only for column names treatment, ba-
sically with the meaning of data.frame(*, check.names = !optional). See
also the make.names argument of the matrix method.

Details

planner_task_search() searches the title and description using case-insensitive regular expres-
sions and returns an ms_plan_task object. In interactive mode and with multiple hits, a menu will
be shown to pick from.

planner_task_find() searches task title or ID, and returns an ms_plan_task object. It is used
internally b a lot of planner_* functions, very fast, and does not support interactive use.

planner_retrieve_project_id() retrieves the p-number from the task title and returns it as in-
teger.

Use planner_create_project_from_path() to convert any folder (and any location) to a project
folder, by (1) assigning a project number, (2) creating a Planner task and (3) moving the old folder
to the department’s projects folder.

planner_highest_project_id() retrieves the currently highest project ID from the dummy project.

planner_highest_project_id() retrieves the currently highest project ID from the dummy project.
planner_highest_consult_id() does this for consults.

project_add 11

Using as.data.frame() or as_tibble() on an ms_object, such as ms_plan_task, will return
the properties and details of the object as a data.frame. For transforming many ms_objects to a
data.frame, use as.data.frame() or as_tibble() in lapply() and bind the list of objects to-
gether. For example, this retrieves a tibble with the properties and details of all tasks:

library(dplyr)
planner_tasks_list() |>
lapply(as_tibble) |>
bind_rows()

also works for other 'ms_object's, such as 'ms_channel':
teams_channels_list(plain = FALSE) |>
lapply(as_tibble) |>
bind_rows()

project_add Add Project Or Consult Using Shiny

Description

This is a Shiny app to add a new project: it creates a project folder locally or in Teams, generates
the required Quarto or R Markdown or R file, and creates a new task in Planner. These functions
come with RStudio addins to quickly access existing projects. For consults, it only adds a Planner
task and creates the card in the background.

Usage

project_add(planner = connect_planner(), teams = NULL, channel = NULL)

project_update(
current_task_id = project_get_current_id(ask = TRUE),
planner = connect_planner()

)

consult_add(planner = connect_planner(), teams = NULL, channel = NULL)

Arguments

planner Microsoft Planner account, as returned by e.g. connect_planner()

teams Microsoft Teams account, as returned by e.g. connect_teams()

channel Microsoft Teams Channel folder, as returned by e.g. teams_projects_channel()
current_task_id

Project (p-)number of the project to update

12 project_properties

project_properties Project Properties

Description

Retrieve project properties, such as the title, folder location and project number.

Usage

project_get_current_id(ask = NULL, account = connect_planner())

project_identifier(project_number = project_get_current_id())

project_get_folder(
project_number = project_get_current_id(),
account = connect_planner()

)

project_get_folder_full(
project_number = project_get_current_id(),
projects_path = read_secret("projects.path"),
account = connect_planner()

)

project_get_title(
project_number = project_get_current_id(),
account = connect_planner()

)

project_get_file(
filename = ".*",
project_number = project_get_current_id(),
fixed = FALSE,
account = connect_planner()

)

project_set_file(
filename,
project_number = project_get_current_id(),
account = connect_planner()

)

project_set_folder(
foldername,
project_number = project_get_current_id(),
account = connect_planner()

)

project_properties 13

project_open_analysis_file(
project_number = project_get_current_id(ask = TRUE),
account = connect_planner()

)

project_open_folder(
project_number = project_get_current_id(ask = TRUE),
account = connect_planner()

)

project_add_qmd_skeleton(
filename = NULL,
project_number = project_get_current_id(),
account = connect_planner()

)

Arguments

ask logical to indicate whether the project number should always be asked. The
default, NULL, will show a popup in interactive R sessions, allowing to search
for projects. In non-interactive sessions, such as in Quarto and R Markdown, it
will use the current working directory to determine the project number.

account a Microsoft 365 account to use for looking up properties. This has to be an object
as returned by connect_planner() or via AzureGraph::create_graph_login()$get_group(name)$get_plan(plan_title).

project_number Planner project number

projects_path location of the folder that contains all department projects

filename name for the new Quarto file

fixed logical to turn off regular expressions

foldername foldername to set

Details

project_get_current_id() uses planner_task_search() to find a specific project based on any
search string.

project_identifier() generates the project identifier for print on reports and in mails: a combi-
nation of the currently logged in user (in your case: ’root’), the current date/time (format: YYM-
MDDHHMM), and the project number. If the project number is not available, it will only return the
current user and date/time (format: YYMMDDHHMM).

project_set_folder() will create the folder if it does not exist.

project_add_qmd_skeleton() initializes a new Quarto skeleton for a project.

Examples

project_identifier(123)

14 schedule_task

schedule_task Schedule Task (CRON-like)

Description

This will source a project file if time and user requirements are met, using a CRON-like syntax
(https://cron.help).

Usage

schedule_task(
minute,
hour,
day,
month,
weekday,
users,
file,
project_number,
log = TRUE,
ref_time = Sys.time(),
account = connect_planner(),
check_mail = length(users) > 1,
check_log = length(users) > 1,
sent_delay = 15,
sent_account = connect_outlook(),
sent_to = read_secret("mail.error_to"),
log_folder = read_secret("projects.log_path")

)

Arguments

minute one or more values between 0-59, or . or "*" for each minute

hour one or more values between 0-23, or . or "*" for each hour

day one or more values between 1-31, or . or "*" for each day

month one or more values between 1-12, or . or "*" for each mpnth

weekday one or more values between 0-7 (Sunday is both 0 and 7; Monday is 1), or . or
"*" for each weekday

users logged in users, must correspond with Sys.info()["user"]. Currently logged
in user is "root". This must be length > 1 if check_mail is TRUE.

file file name within the project, supports regular expression

project_number number of the project, must be numeric and exist in planner_tasks_list()

log a logical to indicate whether this message should be printed: Running scheduled
task at...

https://cron.help

schedule_task 15

ref_time time to use for reference, defaults to Sys.time()

account Planner account

check_mail a logical to indicate whether a project was sent by a previous user, by running
certemail::mail_is_sent()

check_log a logical to indicate whether a log file exist for the project from a previous user

sent_delay delay in minutes. This will be multiplied by the position of the current user in
users minus 1. For example, when sent_delay = 15, this will be 15 for user 2,
and 30 for user 3.

sent_account Outlook account, to search sent mails

sent_to users to send error mail to

log_folder path that contains log files

Details

The Windows Task Scheduler must be set up to use this function. Most convenient is to:

1. Create an R file such as R_cron.R with calls to schedule_task()

2. Create a batch file such as R_cron.bat that runs R_cron.R with R CMD BATCH

3. Set up a Task Scheduler task that runs R_cron.bat every minute

Examples

something_to_run <- function() {
1 + 1

}

units: M H d m wd
schedule_task(., ., ., ., ., "user", "file", 123) # every minute
schedule_task(0, ., ., ., ., "user", "file", 123) # start of each hour
schedule_task(0, 7, ., ., ., "user", "file", 123) # everyday at 7h00
schedule_task(0, 7, 1, ., ., "user", "file", 123) # first day of month at 7h00
schedule_task(0, 7, ., 2, ., "user", "file", 123) # everyday day in February at 7h00
schedule_task(0, 7, ., ., 1, "user", "file", 123) # every Monday at 7h00
schedule_task(0, 7, 1, 2, ., "user", "file", 123) # every 1st of February at 7h00
schedule_task(0, 7, ., 2, 1, "user", "file", 123) # every Monday in February at 7h00
schedule_task(0, 7, 1, 2, 1, "user", "file", 123) # each February 1st if it's a Monday at 7h00
schedule_task(0, 7,29, 2, ., "user", "file", 123) # once every 4 years at 7h00

examples of combinations

everyday at 7h00 and 7h30
schedule_task(c(0, 30), 7, ., ., ., "user", "file", 123)
everyday at 7h00 and 15h00
schedule_task(0, c(7, 15), ., ., ., "user", "file", 123)
everyday at 7h00 and 7h30 and 15h00 and 15h30
schedule_task(c(0, 30), c(7, 15), ., ., ., "user", "file", 123)
every second Monday of the month at 7h00:
schedule_task(0, 7, c(8:14), ., 1, "user", "file", 123)
every 15th of April at 8h30 and 16h30:

16 teams

schedule_task(30, c(8, 16), 15, 4, ., "user", "file", 123)
once per quarter at 8h00 on the first day of the month:
schedule_task(0, 8, 1, c(1, 4, 7, 10), ., "user", "file", 123)

fall-back for failed jobs

this will run at 8h00 if current user is "user1"
schedule_task(0, 8, ., ., ., c("user1", "user2"), "file", 123)
it will run again at default 15 minutes later (so, 8h15), if:
- current user is "user2"
- project 123 has no mail in Sent Items or log of "user1" contains errors

teams Connect to Microsoft Teams via Microsoft 365

Description

These functions use the connection to Microsoft Teams set up with connect_teams().

Usage

teams_projects_channel(
projects_channel_id = read_secret("teams.projects.channel_id"),
overwrite = FALSE,
account = connect_teams()

)

teams_new_project(
task,
channel = teams_projects_channel(),
planner = connect_planner()

)

teams_browse_project(
task,
channel = teams_projects_channel(),
planner = connect_planner()

)

teams_list_project_files(
task,
channel = teams_projects_channel(),
planner = connect_planner()

)

teams_download_project_file(
file,
task,

teams 17

channel = teams_projects_channel(),
planner = connect_planner()

)

teams_get_project_file(
file,
task,
channel = teams_projects_channel(),
planner = connect_planner()

)

teams_open_project_analysis_file(
task,
channel = teams_projects_channel(),
planner = connect_planner()

)

teams_render_project_file(
file,
task,
output_file = NULL,
fun = rmarkdown::render,
...,
channel = teams_projects_channel(),
planner = connect_planner()

)

teams_view_project_file(
file,
task,
channel = teams_projects_channel(),
planner = connect_planner()

)

teams_upload_project_file(
files,
task,
channel = teams_projects_channel(),
planner = connect_planner()

)

teams_download_file(
full_teams_path = NULL,
account = connect_teams(),
destination_dir = getwd(),
overwrite = FALSE

)

18 teams

teams_download_folder(
full_teams_path = NULL,
account = connect_teams(),
destination_dir = getwd(),
recursive = TRUE,
overwrite = FALSE

)

teams_upload_file(
file_path,
full_teams_path = NULL,
account = connect_teams(),
file_name = NULL

)

teams_upload_folder(
folder_path,
full_teams_path = NULL,
account = connect_teams(),
recursive = TRUE

)

pick_teams_item(
full_teams_path = NULL,
account = connect_teams(),
only_folders = FALSE

)

teams_name(account = connect_teams())

teams_channels_list(account = connect_teams(), plain = TRUE)

teams_view_sharepoint(channel, account = connect_teams())

teams_send_message(
body,
channel,
content_type = c("text", "html"),
attachments = NULL,
account = connect_teams()

)

teams_open(teams_path, channel = NULL, account = connect_teams())

teams_get_link(
teams_path,
share_type = c("view", "edit"),
expire_after = "1 month",

teams 19

password = NULL,
channel = NULL,
account = connect_teams()

)

Arguments

projects_channel_id

Teams channel ID of the projects
overwrite a logical to overwrite an existing connection, useful for switching accounts
account a Microsoft 365 account to use for looking up properties. This has to be an

object as returned by connect_teams() or Microsoft365R::get_team().
task any task title, task ID, or ms_plan_task object (e.g. from planner_task_find())
channel a Teams folder object. This has to be an object as returned by teams_projects_channel().
planner a Microsoft 365 account for Planner. This has to be an object as returned by

connect_planner().
file the file name to open
output_file path of the output file
fun function to use for rendering. Can be e.g. rmarkdown::render or quarto::quarto_render.
... arguments passed on to fun

files the files to upload
full_teams_path

a full path in Teams, including the Team name and the channel name. Leave
blank to use interactive mode, which allows file/folder picking from a list in the
console.

destination_dir

a folder to download the file or folder to, defaults to the current working direc-
tory.

recursive download/upload all files within the folder
file_path local path of the file to upload. Can also be an R object to save it as RDS to

Teams.
file_name a file name to use if file_path is an R object
folder_path local path of the folder to upload
only_folders only show folders, not files
plain return as plain names, not as Azure objects
body text of the message
content_type type of content, must be "text" or "html"
attachments vector of file locations of attachments to add to the message
teams_path file location in Microsoft Teams, may also contain the channel name if channel

is NULL, e.g., teams_path = "channel name/test.xlsx"

share_type type of share, must be "view" (default) or "edit"
expire_after time span after which the share link expires, defaults to "1 month", can also be

e.g. "7 days"
password password to set for share link, defaults to blank

20 teams

Details

The teams_new_project() function:

1. Checks if there is a Planner task with the correct task title

2. Creates a new folder in Teams in the projects channel

3. Updates the task to contain the project folder URL as an attachment

The teams_download_project_file() function will download the given project file to a tem-
porary location, and will return the path of this location. This makes it possible to use source(),
rmarkdown::render() or quarto::quarto_render() using the teams_download_project_file()
function as input.

The teams_render_project_file() function allows to render a Teams file. It downloads the
Teams file using teams_download_project_file(), runs the rendering function set in fun, and
uploads the resulting output file back to Teams using the same file name a file, but with the new
file extension (such as pdf, html, or docx). It invisibly returns the temporary local file location, so
that the output of teams_render_project_file() can be given to e.g. certemail::mail() as an
attachment.

The teams_download_file() and teams_download_folder() functions use pick_teams_item()
to select a file or folder, after which they will be downloaded to the destination folder.

The teams_upload_file() and teams_upload_folder() functions use pick_teams_item() to
select the destination folder on Teams. Notice that these upload functions have not overwrite
argument - Microsoft365R does not support them since overwrite means that a new file version will
be created on Teams.

The pick_teams_item() function provides an interactive way to select a file in any Team, any
channel. It returns a list with the properties group_id, is_private, channel_id, item_id, item_name,
item_path, and full_path of the Team item.

teams_send_message() can also take a data.frame, which will be converted to HTML with plain_html_table().
If the input is a vector length > 1, the input will be collapsed with linebreaks.

Examples

Not run:
PROJECT-RELATED --

Project-related Teams function rely on existing Planner tasks.

create a new project, which will be a folder in the Teams channel
for this, the task 'My Planner task' must already exist
teams_new_project("My Planner task")

the task 'My Planner task' will now contain the URL to the project

upload a file there
teams_upload_project_file("analysis.Rmd", "My Planner task")

render R markdown or Quarto from and to the cloud
teams_render_project_file("analysis.Rmd", "My Planner task")
this will put the output file in the same Teams folder as 'analysis.Rmd'

teams 21

teams_open("test.xlsx", "My Channel")
teams_open("my channel/test.xlsx") # shorter version, tries to find channel

PROJECT-UNRELATED --

by not specifying a remote location, a file picker will show in the console:
teams_download_file()
teams_download_folder("MyTeamName/MyChannelName/MySubFolder/")

teams_upload_file("myfile.docx", full_teams_path = "MyTeamName/MyChannelName/MySubFolder/")

also supports data frames, they will be saved as RDS
mtcars |>

teams_upload_file("MyTeamName/MyChannelName/MySubFolder/")

End(Not run)

Index

%like%, 9

as.data.frame(), 11
as.data.frame.ms_object (planner), 6
as_tibble(), 11
as_tibble.ms_object (planner), 6
AzureGraph::create_graph_login(), 3, 9,

13

board_connect(), 5
board_folder(), 5
board_url(), 5

certemail::mail(), 20
certemail::mail_is_sent(), 15
connect, 2
connect_outlook (connect), 2
connect_outlook(), 3
connect_planner (connect), 2
connect_planner(), 3, 6, 9, 11, 13, 19
connect_teams (connect), 2
connect_teams(), 3, 6, 11, 16, 19
consult_add (project_add), 11

data.frame, 10, 11, 20

export_pin (pins), 5

get_azure_property, 4
get_microsoft365_token (connect), 2
get_microsoft365_token(), 3

import_pin (pins), 5
integer, 10
interactive, 13

knit, 4
knit(), 5

lapply(), 11
library(), 3

list, 10
logical, 3, 13–15, 19

make.names, 10
Microsoft365R::get_team(), 6, 19
ms_drive_item, 4
ms_plan, 4
ms_plan_task, 4, 10, 19
ms_team, 4
ms_team_member, 4

new task in Planner, 11

or in Teams, 11

pick_teams_item (teams), 16
pick_teams_item(), 20
pin_list(), 6
pin_meta(), 6
pin_versions(), 6
pins, 5
pins::board_ms365, 6
pins_board (pins), 5
pins_board(), 6
plain_html_table(), 20
planner, 6
planner_browse (planner), 6
planner_bucket_create (planner), 6
planner_buckets_list (planner), 6
planner_categories_list (planner), 6
planner_create_project_from_path

(planner), 6
planner_create_project_from_path(), 10
planner_highest_consult_id (planner), 6
planner_highest_consult_id(), 10
planner_highest_project_id (planner), 6
planner_highest_project_id(), 10
planner_retrieve_project_id (planner), 6
planner_retrieve_project_id(), 10
planner_task_create (planner), 6

22

INDEX 23

planner_task_create(), 9, 10
planner_task_find (planner), 6
planner_task_find(), 10, 19
planner_task_request_validation

(planner), 6
planner_task_search (planner), 6
planner_task_search(), 10, 13
planner_task_update (planner), 6
planner_task_update(), 9
planner_task_validate (planner), 6
planner_tasks_list (planner), 6
planner_tasks_list(), 14
planner_user_property (planner), 6
project_add, 11
project_add_qmd_skeleton

(project_properties), 12
project_add_qmd_skeleton(), 13
project_get_current_id

(project_properties), 12
project_get_current_id(), 13
project_get_file (project_properties),

12
project_get_folder

(project_properties), 12
project_get_folder_full

(project_properties), 12
project_get_title (project_properties),

12
project_identifier

(project_properties), 12
project_identifier(), 13
project_open_analysis_file

(project_properties), 12
project_open_folder

(project_properties), 12
project_properties, 12
project_set_file (project_properties),

12
project_set_folder

(project_properties), 12
project_set_folder(), 13
project_update (project_add), 11

quarto::quarto_render, 19
quarto::quarto_render(), 4, 20

remove_pin (pins), 5
render (knit), 4
render(), 5

rmarkdown::render, 19
rmarkdown::render(), 4, 20

schedule_task, 14
schedule_task(), 15
source, 14
source(), 20
Sys.time(), 15

teams, 16
teams_browse_project (teams), 16
teams_channels_list (teams), 16
teams_download_file (teams), 16
teams_download_file(), 20
teams_download_folder (teams), 16
teams_download_folder(), 20
teams_download_project_file (teams), 16
teams_download_project_file(), 20
teams_get_link (teams), 16
teams_get_project_file (teams), 16
teams_list_project_files (teams), 16
teams_name (teams), 16
teams_new_project (teams), 16
teams_new_project(), 20
teams_open (teams), 16
teams_open_project_analysis_file

(teams), 16
teams_projects_channel (teams), 16
teams_projects_channel(), 6, 11, 19
teams_render_project_file (teams), 16
teams_render_project_file(), 20
teams_send_message (teams), 16
teams_send_message(), 20
teams_upload_file (teams), 16
teams_upload_file(), 20
teams_upload_folder (teams), 16
teams_upload_folder(), 20
teams_upload_project_file (teams), 16
teams_view_project_file (teams), 16
teams_view_sharepoint (teams), 16

working directory, 13

	connect
	get_azure_property
	knit
	pins
	planner
	project_add
	project_properties
	schedule_task
	teams
	Index

