Package: certestats 1.23.1
certestats: A Certe R Package for Statistical Modelling
A Certe R Package for early-warning, applying statistical modelling (such as creating machine learning models), QC rules and distribution analysis. This package is part of the 'certedata' universe.
Authors:
certestats_1.23.1.tar.gz
certestats_1.23.1.zip(r-4.5)certestats_1.23.1.zip(r-4.4)certestats_1.23.1.zip(r-4.3)
certestats_1.23.1.tgz(r-4.4-any)certestats_1.23.1.tgz(r-4.3-any)
certestats_1.23.1.tar.gz(r-4.5-noble)certestats_1.23.1.tar.gz(r-4.4-noble)
certestats_1.23.1.tgz(r-4.4-emscripten)certestats_1.23.1.tgz(r-4.3-emscripten)
certestats.pdf |certestats.html✨
certestats/json (API)
# Install 'certestats' in R: |
install.packages('certestats', repos = c('https://certe-medical-epidemiology.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/certe-medical-epidemiology/certestats/issues
- esbl_tests - Example Data Set with ESBL Test Outcomes
Last updated 19 days agofrom:ab9d2635bd. Checks:OK: 5 NOTE: 2. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 05 2024 |
R-4.5-win | NOTE | Nov 05 2024 |
R-4.5-linux | NOTE | Nov 05 2024 |
R-4.4-win | OK | Nov 05 2024 |
R-4.4-mac | OK | Nov 05 2024 |
R-4.3-win | OK | Nov 05 2024 |
R-4.3-mac | OK | Nov 05 2024 |
Exports:allanyapply_model_toas.binaryautoplotcentre_meancheck_testing_predictionsciconfusion_matrixcorrelation_plotcqvcvdecilesearly_warning_biomarkerearly_warning_clustereverythingewmafeature_importance_plotfeature_importancesfivenumgain_plotget_accuracyget_coefficientsget_kappaget_metricsget_miceget_model_variablesget_original_dataget_recipeget_roc_dataget_rows_testingget_rows_trainingget_specificationget_variable_weightshas_cluster_afterhas_cluster_beforehas_clustershas_ongoing_clusterimputeIQRis_imputedis.binarymaemapemaxmeanmean_geometricmean_harmonicmedianmetricsmidhingeminml_decision_treesml_linear_regressionml_logistic_regressionml_nearest_neighbourml_neural_networkml_random_forestml_xg_boostmoving_averagemoving_fnmoving_Q1moving_Q3moving_summsen_clustersnormalisenormalitynormalizepercentilespmaxpminprodqc_rule_textqc_rule1qc_rule2qc_rule3qc_rule4qc_rule5qc_rule6qc_rule7qc_rule8qc_testquantilerangeregressionremove_outliersrmseroc_plotrow_functionrr_ewmascale_sdsdsesumsum_of_squarestree_plottry_binarytune_parametersvarweighted_fnweighted_meanweighted_medianweighted_Q1weighted_Q3z_score
Dependencies:AMRbackportsbitbit64broomcertestyleclasscleanerclicliprclockcodetoolscolorspacecpp11crayondata.tablediagramdialsDiceDesigndigestdoFuturedplyrevaluatefansifarverforeachfurrrfuturefuture.applygenericsggplot2globalsgluegowerGPfitgtablehardhathighrhmsipredisobanditeratorsKernSmoothknitrlabelinglatticelavalhslifecyclelistenvlubridatemagrittrMASSMatrixmgcvmodelenvmunsellnlmennetnumDerivparallellyparsnippillarpkgconfigprettyunitsprodlimprogressprogressrpurrrR6RColorBrewerRcppreadrrecipesrlangrpartrsamplerstudioapiscalessfdshapesliderSQUAREMstringistringrsurvivaltibbletidyrtidyselecttimechangetimeDatetunetzdbutf8vctrsviridisLitevroomwarpwithrworkflowsxfunyamlyardstick
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Work with Binary Columns | as.binary is.binary try_binary |
Confusion Matrix Metrics | confusion_matrix confusion_matrix.default |
Different Means | different_means mean_geometric mean_harmonic |
Distribution Metrics | centre_mean ci cqv cv deciles distribution_metrics ewma mae mape midhinge mse normalise normalize percentiles rmse rr_ewma scale_sd se sum_of_squares z_score |
Early Warning for Biomarkers | early_warning_biomarker |
Early Warning for Disease Clusters | early_warning_cluster has_clusters has_cluster_after has_cluster_before has_ongoing_cluster n_clusters |
Example Data Set with ESBL Test Outcomes | esbl_tests |
Impute: Filling Missing Values | get_mice impute is_imputed |
Create a Machine Learning (ML) Model | apply_model_to autoplot.certestats_feature_importances autoplot.certestats_ml autoplot.certestats_tuning check_testing_predictions confusion_matrix.certestats_ml correlation_plot feature_importances feature_importance_plot gain_plot get_accuracy get_coefficients get_kappa get_metrics get_model_variables get_original_data get_recipe get_roc_data get_rows_testing get_rows_training get_specification get_variable_weights machine_learning ml_decision_trees ml_linear_regression ml_logistic_regression ml_nearest_neighbour ml_neural_network ml_random_forest ml_xg_boost predict.certestats_ml roc_plot tree_plot tune_parameters |
Mathematical Functions With Global 'na.rm' | all any fivenum IQR math_functions max mean median min pmax pmin prod quantile range sd sum var |
Moving Average | moving_average moving_fn moving_Q1 moving_Q3 moving_sum |
Normality Analysis | normality |
Quality Control (QC) Rules | qc_rule1 qc_rule2 qc_rule3 qc_rule4 qc_rule5 qc_rule6 qc_rule7 qc_rule8 qc_rules qc_rule_text qc_test |
Fast Regression Models | autoplot.certestats_reg plot.certestats_reg regression regression.data.frame regression.default |
Remove Outliers | remove_outliers |
Apply Function per Row | row_function |
Weighted Mean | weighted_fn weighted_mean weighted_median weighted_Q1 weighted_Q3 |