Title: | A Plotting Assistant for Fast 'ggplot2' Visualisations |
---|---|
Description: | A streamlined extension of 'ggplot2' designed to simplify and accelerate the creation of data visualisations. 'plot2' automates common tasks such as axis handling, plot type selection, and data transformation, allowing users to create complex, publication-ready plots with minimal code. It integrates seamlessly with the tidyverse and retains full compatibility with 'ggplot2', while offering additional conveniences like enhanced sorting, faceting, and custom theming. |
Authors: | Matthijs S. Berends [aut, cre] |
Maintainer: | Matthijs S. Berends <[email protected]> |
License: | GPL-2 |
Version: | 1.25.0.9004 |
Built: | 2024-11-05 10:20:56 UTC |
Source: | https://github.com/msberends/plot2 |
This function can be used to adjust the mapping of a plot.
add_mapping(plot, ...)
add_mapping(plot, ...)
plot |
a |
... |
arguments passed on to |
p <- iris |> plot2(Sepal.Length, Sepal.Width, Species, zoom = TRUE) p p |> add_mapping(shape = Species)
p <- iris |> plot2(Sepal.Length, Sepal.Width, Species, zoom = TRUE) p p |> add_mapping(shape = Species)
Quickly and conveniently add a new 'geom' to an existing plot2
/ggplot
model. Like plot2()
, these functions support tidy evaluation, meaning that variables can be unquoted. Better yet, they can contain any function with any output length, or any vector. They can be added using the pipe (new base R's |>
or tidyverse's %>%
).
add_type(plot, type = NULL, mapping = aes(), ..., data = NULL, move = 0) add_line( plot, y = NULL, x = NULL, colour = getOption("plot2.colour", "ggplot2"), linetype, linewidth, ..., inherit.aes = NULL, move = 0, legend.value = NULL ) add_point( plot, y = NULL, x = NULL, colour = getOption("plot2.colour", "ggplot2"), size, shape, ..., inherit.aes = NULL, move = 0, legend.value = NULL ) add_col( plot, y = NULL, x = NULL, colour = getOption("plot2.colour", "ggplot2"), colour_fill, width, ..., inherit.aes = NULL, move = 0, legend.value = NULL ) add_errorbar( plot, min, max, colour = getOption("plot2.colour", "ggplot2"), width = 0.5, ..., inherit.aes = NULL, move = 0 ) add_sf( plot, sf_data, colour = getOption("plot2.colour_sf", "grey50"), colour_fill = getOption("plot2.colour_sf_fill", getOption("plot2.colour", "ggplot2")), size = 2, linewidth = 0.1, datalabels = NULL, datalabels.colour = "black", datalabels.size = 3, datalabels.angle = 0, datalabels.font = getOption("plot2.font"), datalabels.nudge_y = 2500, ..., inherit.aes = FALSE )
add_type(plot, type = NULL, mapping = aes(), ..., data = NULL, move = 0) add_line( plot, y = NULL, x = NULL, colour = getOption("plot2.colour", "ggplot2"), linetype, linewidth, ..., inherit.aes = NULL, move = 0, legend.value = NULL ) add_point( plot, y = NULL, x = NULL, colour = getOption("plot2.colour", "ggplot2"), size, shape, ..., inherit.aes = NULL, move = 0, legend.value = NULL ) add_col( plot, y = NULL, x = NULL, colour = getOption("plot2.colour", "ggplot2"), colour_fill, width, ..., inherit.aes = NULL, move = 0, legend.value = NULL ) add_errorbar( plot, min, max, colour = getOption("plot2.colour", "ggplot2"), width = 0.5, ..., inherit.aes = NULL, move = 0 ) add_sf( plot, sf_data, colour = getOption("plot2.colour_sf", "grey50"), colour_fill = getOption("plot2.colour_sf_fill", getOption("plot2.colour", "ggplot2")), size = 2, linewidth = 0.1, datalabels = NULL, datalabels.colour = "black", datalabels.size = 3, datalabels.angle = 0, datalabels.font = getOption("plot2.font"), datalabels.nudge_y = 2500, ..., inherit.aes = FALSE )
plot |
a |
type |
a |
mapping |
a mapping created with |
data |
data to use in mapping |
move |
number of layers to move the newly added geom down, e.g., |
x , y
|
aesthetic arguments |
colour , colour_fill
|
colour of the line or column, will be evaluated with |
linetype , linewidth , shape , size , width , ...
|
arguments passed on to the geom |
inherit.aes |
a logical to indicate whether the default aesthetics should be inherited, rather than combining with them |
legend.value |
text to show in an additional legend that will be created. Since |
min , max
|
minimum (lower) and maximum (upper) values of the error bars |
sf_data |
an 'sf' data.frame |
datalabels |
a column of |
datalabels.colour , datalabels.size , datalabels.angle , datalabels.font
|
properties of |
datalabels.nudge_y |
is |
The function add_line()
will add:
geom_hline()
if only y
is provided;
geom_vline()
if only x
is provided;
geom_line()
in all other cases.
The function add_errorbar()
only adds error bars to the y
values, see Examples.
a ggplot
object
head(iris) p <- iris |> plot2(x = Sepal.Length, y = Sepal.Width, category = Species, zoom = TRUE) p # if not specifying x or y, current plot data are taken p |> add_line() # single values for add_line() will plot 'hline' or 'vline' # even considering the `category` if set p |> add_line(y = mean(Sepal.Width)) # set `colour` to ignore existing colours # and use `legend.value` to add a legend p |> add_line(y = mean(Sepal.Width), colour = "red", legend.value = "Average") p |> add_line(x = mean(Sepal.Length)) |> add_line(y = mean(Sepal.Width)) p |> add_point(x = median(Sepal.Length), y = median(Sepal.Width), shape = 13, size = 25, show.legend = FALSE) # multiple values will just plot multiple lines p |> add_line(y = fivenum(Sepal.Width), colour = "blue", legend.value = "Tukey's Numbers") p |> add_line(y = quantile(Sepal.Width, c(0.25, 0.5, 0.75)), colour = c("red", "black", "red"), linewidth = 1) # use move to move the new layer down p |> add_point(size = 5, colour = "lightpink", move = -1) # providing x and y will just plot the points as new data, p |> add_point(y = 2:4, x = 5:7, colour = "red", size = 5) # even with expanded grid if x and y are not of the same length p |> add_point(y = 2:4, x = 5:8, colour = "red", size = 5) # any mathematical transformation of current values is supported df <- data.frame(var_1 = c(1:100), var_2 = rnorm(100, 100, 25), var_3 = rep(LETTERS[1:5], 5)) df |> plot2(var_1, var_2) |> add_line(y = mean(var_2), linetype = 3, legend.value = "Average") |> add_col(y = var_2 / 5, width = 0.25, colour = "blue", legend.value = "This *is* **some** symbol: $beta$") # plotting error bars was never easier library("dplyr", warn.conflicts = FALSE) df2 <- df |> as_tibble() |> slice(1:25) |> filter(var_1 <= 50) |> mutate(error1 = var_2 * 0.9, error2 = var_2 * 1.1) df2 df2 |> plot2(var_1, var_2, var_3, type = "col", datalabels = FALSE, alpha = 0.25, width = 0.75) |> # adding error bars was never easier - just reference the lower and upper values add_errorbar(error1, error2) # adding sf objects is just as convenient as all else plot2(netherlands) plot2(netherlands) |> add_sf(netherlands, colour_fill = NA, colour = "red", linewidth = 1)
head(iris) p <- iris |> plot2(x = Sepal.Length, y = Sepal.Width, category = Species, zoom = TRUE) p # if not specifying x or y, current plot data are taken p |> add_line() # single values for add_line() will plot 'hline' or 'vline' # even considering the `category` if set p |> add_line(y = mean(Sepal.Width)) # set `colour` to ignore existing colours # and use `legend.value` to add a legend p |> add_line(y = mean(Sepal.Width), colour = "red", legend.value = "Average") p |> add_line(x = mean(Sepal.Length)) |> add_line(y = mean(Sepal.Width)) p |> add_point(x = median(Sepal.Length), y = median(Sepal.Width), shape = 13, size = 25, show.legend = FALSE) # multiple values will just plot multiple lines p |> add_line(y = fivenum(Sepal.Width), colour = "blue", legend.value = "Tukey's Numbers") p |> add_line(y = quantile(Sepal.Width, c(0.25, 0.5, 0.75)), colour = c("red", "black", "red"), linewidth = 1) # use move to move the new layer down p |> add_point(size = 5, colour = "lightpink", move = -1) # providing x and y will just plot the points as new data, p |> add_point(y = 2:4, x = 5:7, colour = "red", size = 5) # even with expanded grid if x and y are not of the same length p |> add_point(y = 2:4, x = 5:8, colour = "red", size = 5) # any mathematical transformation of current values is supported df <- data.frame(var_1 = c(1:100), var_2 = rnorm(100, 100, 25), var_3 = rep(LETTERS[1:5], 5)) df |> plot2(var_1, var_2) |> add_line(y = mean(var_2), linetype = 3, legend.value = "Average") |> add_col(y = var_2 / 5, width = 0.25, colour = "blue", legend.value = "This *is* **some** symbol: $beta$") # plotting error bars was never easier library("dplyr", warn.conflicts = FALSE) df2 <- df |> as_tibble() |> slice(1:25) |> filter(var_1 <= 50) |> mutate(error1 = var_2 * 0.9, error2 = var_2 * 1.1) df2 df2 |> plot2(var_1, var_2, var_3, type = "col", datalabels = FALSE, alpha = 0.25, width = 0.75) |> # adding error bars was never easier - just reference the lower and upper values add_errorbar(error1, error2) # adding sf objects is just as convenient as all else plot2(netherlands) plot2(netherlands) |> add_sf(netherlands, colour_fill = NA, colour = "red", linewidth = 1)
An auto-generated data set containing fictitious patients admitted to hospitals.
admitted_patients
admitted_patients
A tibble/data.frame with 250 observations and 7 variables:
date
date of hospital admission
patient_id
ID of the patient (fictitious)
gender
gender of the patient
age
age of the patient
age_group
age group of the age of the patient, generated with AMR::age_groups()
hospital
ID of the hospital, from A to D
ward
type of ward, either ICU or Non-ICU
Transform a ggplot2
/plot2
object to an interactive plot using the Plotly R Open Source Graphing Library.
as_plotly(plot, ...) plotly_style(plot, ...)
as_plotly(plot, ...) plotly_style(plot, ...)
plot |
a |
... |
In case of In case of |
mtcars |> plot2(mpg, hp) |> as_plotly() mtcars |> plot2(mpg, hp) |> as_plotly(dragmode = "pan") |> plotly_style(marker.line.color = "red", hoverinfo = "y")
mtcars |> plot2(mpg, hp) |> as_plotly() mtcars |> plot2(mpg, hp) |> as_plotly(dragmode = "pan") |> plotly_style(marker.line.color = "red", hoverinfo = "y")
These functions determine which characters the decimal mark and big mark should be that are used in plotting. They base the determination on getOption("OutDec")
, which is also what base::format()
uses.
dec_mark() big_mark()
dec_mark() big_mark()
If the option "dec_mark"
is set, that value will be used for dec_mark()
if it is either a comma or a full stop.
At default, big_mark()
returns a full stop if dec_mark()
returns a comma, and a space otherwise. If the option "big_mark"
is set, that value will be used if it is either a comma (","
) or a full stop ("."
) or a space (" "
) or an empty character (""
).
# at default, this follows `getOption("OutDec")`: dec_mark() # and big_mark() returns a space if dec_mark() returns ".": big_mark() # you you can set options to alter behaviour: options(dec_mark = ",", big_mark = ".") dec_mark() big_mark() options(dec_mark = ",", big_mark = NULL) dec_mark() big_mark() options(big_mark = ",") dec_mark() big_mark() # clean up options(dec_mark = NULL, big_mark = NULL)
# at default, this follows `getOption("OutDec")`: dec_mark() # and big_mark() returns a space if dec_mark() returns ".": big_mark() # you you can set options to alter behaviour: options(dec_mark = ",", big_mark = ".") dec_mark() big_mark() options(dec_mark = ",", big_mark = NULL) dec_mark() big_mark() options(big_mark = ",") dec_mark() big_mark() # clean up options(dec_mark = NULL, big_mark = NULL)
Colours from R, viridis and more. The output prints in the console with the actual colours.
get_colour(x, length = 1, opacity = 0) register_colour(...) ## S3 method for class 'colour' as.character(x, ...) ## S3 method for class 'colour' print(x, ...) add_white(x, white)
get_colour(x, length = 1, opacity = 0) register_colour(...) ## S3 method for class 'colour' as.character(x, ...) ## S3 method for class 'colour' print(x, ...) add_white(x, white)
x |
colour or colour palette name. Input can be:
|
length |
size of the vector to be returned |
opacity |
amount of opacity (0 = solid, 1 = transparent) |
... |
named vectors with known, valid colours. They must be coercible with |
white |
number between |
A palette from R will be expanded where needed, so even get_colour("R4", length = 20)
will work, despite "R4" only supporting a maximum of eight colours.
character vector in HTML format (i.e., "#AABBCC"
) with new class colour
get_colour(c("red", "tan1", "#ffa", "FFAA00")) par(mar = c(0.5, 2.5, 1.5, 0)) # set plot margins for below plots # all colourblind-safe colour palettes from the famous viridisLite package barplot(1:7, col = get_colour("viridis", 7)) barplot(1:7, col = get_colour("magma", 7)) barplot(8:1, col = get_colour("R4", 8), main = "Some palettes have only 8 colours...") barplot(20:1, col = get_colour("R4", 20), main = "Not anymore!") # Registering Colours -------------------------------------------------- # to register colours, use named input - the values will be evaluated # with get_colour() get_colour("red123") register_colour(red123 = "red", red456 = "#ff0000", red789 = "f00") get_colour("red123") get_colour("red456") get_colour("red789") # you can also register a group name register_colour(red_group = c("red123", "ff4400", "red3", "red4")) get_colour("red_group") get_colour("red_group", 3) # Registering colours is ideal for your (organisational) style in plots. # Let's say these are your style: register_colour(navy_blue = "#1F3A93", burnt_orange = "#D35400", forest_green = "#2C6F47", goldenrod_yellow = "#DAA520", slate_grey = "#708090", plum_purple = "#8E4585") # Then register the whole colour list too: register_colour(my_organisation = c("navy_blue", "burnt_orange", "forest_green", "goldenrod_yellow", "slate_grey", "plum_purple")) # Check that it works: get_colour("my_organisation", length = 6) # Now use it in plots as you like: iris |> plot2(x = Species, y = where(is.double), colour = "my_organisation") # Or even set the option to use it in any future plot: options(plot2.colour = "my_organisation") iris |> plot2(x = Species, y = where(is.double)) # reset option again options(plot2.colour = NULL) # Use add_white() to add white to existing colours: colours <- get_colour("R4", 6) colours add_white(colours, 0.25) add_white(colours, 0.5) add_white(colours, 0.75) add_white("red", 1/128) add_white("red", 1/64) add_white("red", 1/32)
get_colour(c("red", "tan1", "#ffa", "FFAA00")) par(mar = c(0.5, 2.5, 1.5, 0)) # set plot margins for below plots # all colourblind-safe colour palettes from the famous viridisLite package barplot(1:7, col = get_colour("viridis", 7)) barplot(1:7, col = get_colour("magma", 7)) barplot(8:1, col = get_colour("R4", 8), main = "Some palettes have only 8 colours...") barplot(20:1, col = get_colour("R4", 20), main = "Not anymore!") # Registering Colours -------------------------------------------------- # to register colours, use named input - the values will be evaluated # with get_colour() get_colour("red123") register_colour(red123 = "red", red456 = "#ff0000", red789 = "f00") get_colour("red123") get_colour("red456") get_colour("red789") # you can also register a group name register_colour(red_group = c("red123", "ff4400", "red3", "red4")) get_colour("red_group") get_colour("red_group", 3) # Registering colours is ideal for your (organisational) style in plots. # Let's say these are your style: register_colour(navy_blue = "#1F3A93", burnt_orange = "#D35400", forest_green = "#2C6F47", goldenrod_yellow = "#DAA520", slate_grey = "#708090", plum_purple = "#8E4585") # Then register the whole colour list too: register_colour(my_organisation = c("navy_blue", "burnt_orange", "forest_green", "goldenrod_yellow", "slate_grey", "plum_purple")) # Check that it works: get_colour("my_organisation", length = 6) # Now use it in plots as you like: iris |> plot2(x = Species, y = where(is.double), colour = "my_organisation") # Or even set the option to use it in any future plot: options(plot2.colour = "my_organisation") iris |> plot2(x = Species, y = where(is.double)) # reset option again options(plot2.colour = NULL) # Use add_white() to add white to existing colours: colours <- get_colour("R4", 6) colours add_white(colours, 0.25) add_white(colours, 0.5) add_white(colours, 0.75) add_white("red", 1/128) add_white("red", 1/64) add_white("red", 1/32)
Get the title of the plot, or a default value. If the title is not set in a plot, this function tries to generate one from the plot mapping.
get_plot_title(plot, valid_filename = TRUE, default = NULL)
get_plot_title(plot, valid_filename = TRUE, default = NULL)
plot |
a |
valid_filename |
a logical to indicate whether the returned value should be a valid filename, defaults to |
default |
the default value, if a plot title is absent |
without_title <- plot2(mtcars) with_title <- plot2(mtcars, title = "Plotting **mpg** vs. **cyl**!") # default is a guess: get_plot_title(without_title) get_plot_title(without_title, valid_filename = FALSE) get_plot_title(with_title) get_plot_title(with_title, valid_filename = FALSE) # unless 'default' is set (only affects plots without title): get_plot_title(without_title, default = "title") get_plot_title(with_title, default = "title")
without_title <- plot2(mtcars) with_title <- plot2(mtcars, title = "Plotting **mpg** vs. **cyl**!") # default is a guess: get_plot_title(without_title) get_plot_title(without_title, valid_filename = FALSE) get_plot_title(with_title) get_plot_title(with_title, valid_filename = FALSE) # unless 'default' is set (only affects plots without title): get_plot_title(without_title, default = "title") get_plot_title(with_title, default = "title")
Format numbers as currency, rounding values to dollars or cents using a convenient heuristic.
euros(x, big.mark = big_mark(), decimal.mark = dec_mark(), ...) dollars(x, big.mark = big_mark(), decimal.mark = dec_mark(), ...)
euros(x, big.mark = big_mark(), decimal.mark = dec_mark(), ...) dollars(x, big.mark = big_mark(), decimal.mark = dec_mark(), ...)
x |
values |
big.mark |
thousands separator, defaults to |
decimal.mark |
decimal mark, defaults to |
... |
any argument to give to the geom. This will override automatically-set settings for the geom. |
## Not run: profit <- data.frame(group = LETTERS[1:4], profit = runif(4, 10000, 25000)) profit |> plot2(y.labels = euros, datalabels = FALSE) profit |> plot2(y.labels = euros, datalabels.format = euros) ## End(Not run)
## Not run: profit <- data.frame(group = LETTERS[1:4], profit = runif(4, 10000, 25000)) profit |> plot2(y.labels = euros, datalabels = FALSE) profit |> plot2(y.labels = euros, datalabels.format = euros) ## End(Not run)
This function converts common markdown language to an R plotmath expression. plot2()
uses this function internally to convert plot titles and axis titles.
md_to_expression(x)
md_to_expression(x)
x |
text to convert, only the first value will be evaluated |
This function only supports common markdown (italic, bold, bold-italic, subscript, superscript), but also supports some additional functionalities for more advanced expressions using R plotmath. Please see Examples.
In plot2()
, this function can be also set to argument category.labels
to print the data values as expressions:
plot2(..., category.labels = md_to_expression)
An expression if x
is length 1, or a list of expressions otherwise
# use '*' for italics, not '_', to prevent conflicts with variable naming md_to_expression("this is *italic* text, this is _not italic_ text") md_to_expression("this is **bold** text") md_to_expression("this is ***bold and italic*** text") # subscript and superscript can be done in HTML or markdown with curly brackets: md_to_expression("this is some<sub>subscripted text</sub>, this is also_{subscripted} text") md_to_expression("this is some<sup>superscripted text</sup>, this is also^{superscripted} text") # use $...$ to use any plotmath expression as-is (see ?plotmath): md_to_expression("text $omega$ text, $a[x]$") mtcars |> plot2(mpg, hp, title = "*These are* the **Greek** lower $omega$ and upper $Omega$", x.title = "x_{mpg}", y.title = "y_{hp}") mtcars |> plot2(mpg, hp, title = "$f[X](x)==frac(1, sigma*sqrt(2*pi))*plain(e)^{frac(-(x-mu)^2, 2*sigma^2)}$", subtitle = "Some insane $widehat(plotmath)$ title")
# use '*' for italics, not '_', to prevent conflicts with variable naming md_to_expression("this is *italic* text, this is _not italic_ text") md_to_expression("this is **bold** text") md_to_expression("this is ***bold and italic*** text") # subscript and superscript can be done in HTML or markdown with curly brackets: md_to_expression("this is some<sub>subscripted text</sub>, this is also_{subscripted} text") md_to_expression("this is some<sup>superscripted text</sup>, this is also^{superscripted} text") # use $...$ to use any plotmath expression as-is (see ?plotmath): md_to_expression("text $omega$ text, $a[x]$") mtcars |> plot2(mpg, hp, title = "*These are* the **Greek** lower $omega$ and upper $Omega$", x.title = "x_{mpg}", y.title = "y_{hp}") mtcars |> plot2(mpg, hp, title = "$f[X](x)==frac(1, sigma*sqrt(2*pi))*plain(e)^{frac(-(x-mu)^2, 2*sigma^2)}$", subtitle = "Some insane $widehat(plotmath)$ title")
ggplot
LayerUse this function to move a certain plot layer up or down. This function returns a ggplot
object.
move_layer(plot, move = -1, layer = length(plot$layers))
move_layer(plot, move = -1, layer = length(plot$layers))
plot |
a |
move |
number of layers to move |
layer |
the layer to affect, defaults to top layer |
A data set containing the geometies of the twelve provinces of the Netherlands, according to Statistics Netherlands (2021).
netherlands
netherlands
A data.frame with 12 observations and 3 variables:
province
name of the Dutch province
area_km2
area in square kilometres
geometry
geometry of the province, of class sfc_MULTIPOLYGON/sfc
ggplot
The plot2()
function is a convenient wrapper around many ggplot2
functions. By design, the ggplot2
package requires users to use a lot of functions and manual settings, while the plot2()
function does all the heavy lifting automatically and only requires users to define some arguments in one single function, greatly increases convenience.
Moreover, plot2()
allows for in-place calculation of y
, all axes, and all axis labels, often preventing the need to use group_by()
, count()
, mutate()
, or summarise()
.
See plot2-methods for all implemented methods for different object classes.
plot2( .data, x = NULL, y = NULL, category = NULL, facet = NULL, type = NULL, x.title = TRUE, y.title = TRUE, category.title = NULL, title = NULL, subtitle = NULL, caption = NULL, tag = NULL, title.linelength = 60, title.colour = getOption("plot2.colour_font_primary", "black"), subtitle.linelength = 60, subtitle.colour = getOption("plot2.colour_font_secondary", "grey35"), na.replace = "", na.rm = FALSE, facet.position = "top", facet.fill = NULL, facet.bold = TRUE, facet.italic = FALSE, facet.size = 10, facet.margin = 8, facet.repeat_lbls_x = TRUE, facet.repeat_lbls_y = NULL, facet.fixed_y = NULL, facet.fixed_x = NULL, facet.drop = FALSE, facet.nrow = NULL, facet.relative = FALSE, x.date_breaks = NULL, x.date_labels = NULL, x.date_remove_years = NULL, category.focus = NULL, colour = getOption("plot2.colour", "ggplot2"), colour_fill = NULL, colour_opacity = 0, x.lbl_angle = 0, x.lbl_align = NULL, x.lbl_italic = FALSE, x.lbl_taxonomy = FALSE, x.remove = FALSE, x.position = "bottom", x.max_items = Inf, x.max_txt = "(rest, x%n)", category.max_items = Inf, category.max_txt = "(rest, x%n)", facet.max_items = Inf, facet.max_txt = "(rest, x%n)", x.breaks = NULL, x.n_breaks = NULL, x.transform = "identity", x.expand = NULL, x.limits = NULL, x.labels = NULL, x.character = NULL, x.drop = FALSE, x.mic = FALSE, x.zoom = FALSE, y.remove = FALSE, y.24h = FALSE, y.age = FALSE, y.scientific = NULL, y.percent = FALSE, y.percent_break = 0.1, y.breaks = NULL, y.n_breaks = NULL, y.limits = NULL, y.labels = NULL, y.expand = NULL, y.transform = "identity", y.position = "left", y.zoom = FALSE, y_secondary = NULL, y_secondary.type = type, y_secondary.title = TRUE, y_secondary.colour = colour, y_secondary.colour_fill = colour_fill, y_secondary.scientific = NULL, y_secondary.percent = FALSE, y_secondary.labels = NULL, category.labels = NULL, category.percent = FALSE, category.breaks = NULL, category.limits = NULL, category.expand = 0, category.midpoint = NULL, category.transform = "identity", category.date_breaks = NULL, category.date_labels = NULL, category.character = NULL, x.sort = NULL, category.sort = TRUE, facet.sort = TRUE, x.complete = NULL, category.complete = NULL, facet.complete = NULL, datalabels = TRUE, datalabels.round = ifelse(y.percent, 2, 1), datalabels.format = "%n", datalabels.colour = "grey25", datalabels.colour_fill = NULL, datalabels.size = (3 * text_factor), datalabels.angle = 0, datalabels.lineheight = 1, decimal.mark = dec_mark(), big.mark = big_mark(), summarise_function = base::sum, stacked = FALSE, stackedpercent = FALSE, horizontal = FALSE, reverse = horizontal, smooth = NULL, smooth.method = NULL, smooth.formula = NULL, smooth.se = TRUE, smooth.level = 0.95, smooth.alpha = 0.25, smooth.linewidth = 0.75, smooth.linetype = 3, smooth.colour = NULL, size = NULL, linetype = 1, linewidth = NULL, binwidth = NULL, width = NULL, jitter_seed = NA, violin_scale = "count", legend.position = NULL, legend.title = NULL, legend.reverse = FALSE, legend.barheight = 6, legend.barwidth = 1.5, legend.nbin = 300, legend.italic = FALSE, sankey.node_width = 0.15, sankey.node_whitespace = 0.03, sankey.alpha = 0.5, sankey.remove_axes = NULL, zoom = FALSE, sep = " / ", print = FALSE, text_factor = 1, font = getOption("plot2.font"), theme = getOption("plot2.theme", "theme_minimal2"), background = getOption("plot2.colour_background", "white"), markdown = TRUE, data = NULL, ... )
plot2( .data, x = NULL, y = NULL, category = NULL, facet = NULL, type = NULL, x.title = TRUE, y.title = TRUE, category.title = NULL, title = NULL, subtitle = NULL, caption = NULL, tag = NULL, title.linelength = 60, title.colour = getOption("plot2.colour_font_primary", "black"), subtitle.linelength = 60, subtitle.colour = getOption("plot2.colour_font_secondary", "grey35"), na.replace = "", na.rm = FALSE, facet.position = "top", facet.fill = NULL, facet.bold = TRUE, facet.italic = FALSE, facet.size = 10, facet.margin = 8, facet.repeat_lbls_x = TRUE, facet.repeat_lbls_y = NULL, facet.fixed_y = NULL, facet.fixed_x = NULL, facet.drop = FALSE, facet.nrow = NULL, facet.relative = FALSE, x.date_breaks = NULL, x.date_labels = NULL, x.date_remove_years = NULL, category.focus = NULL, colour = getOption("plot2.colour", "ggplot2"), colour_fill = NULL, colour_opacity = 0, x.lbl_angle = 0, x.lbl_align = NULL, x.lbl_italic = FALSE, x.lbl_taxonomy = FALSE, x.remove = FALSE, x.position = "bottom", x.max_items = Inf, x.max_txt = "(rest, x%n)", category.max_items = Inf, category.max_txt = "(rest, x%n)", facet.max_items = Inf, facet.max_txt = "(rest, x%n)", x.breaks = NULL, x.n_breaks = NULL, x.transform = "identity", x.expand = NULL, x.limits = NULL, x.labels = NULL, x.character = NULL, x.drop = FALSE, x.mic = FALSE, x.zoom = FALSE, y.remove = FALSE, y.24h = FALSE, y.age = FALSE, y.scientific = NULL, y.percent = FALSE, y.percent_break = 0.1, y.breaks = NULL, y.n_breaks = NULL, y.limits = NULL, y.labels = NULL, y.expand = NULL, y.transform = "identity", y.position = "left", y.zoom = FALSE, y_secondary = NULL, y_secondary.type = type, y_secondary.title = TRUE, y_secondary.colour = colour, y_secondary.colour_fill = colour_fill, y_secondary.scientific = NULL, y_secondary.percent = FALSE, y_secondary.labels = NULL, category.labels = NULL, category.percent = FALSE, category.breaks = NULL, category.limits = NULL, category.expand = 0, category.midpoint = NULL, category.transform = "identity", category.date_breaks = NULL, category.date_labels = NULL, category.character = NULL, x.sort = NULL, category.sort = TRUE, facet.sort = TRUE, x.complete = NULL, category.complete = NULL, facet.complete = NULL, datalabels = TRUE, datalabels.round = ifelse(y.percent, 2, 1), datalabels.format = "%n", datalabels.colour = "grey25", datalabels.colour_fill = NULL, datalabels.size = (3 * text_factor), datalabels.angle = 0, datalabels.lineheight = 1, decimal.mark = dec_mark(), big.mark = big_mark(), summarise_function = base::sum, stacked = FALSE, stackedpercent = FALSE, horizontal = FALSE, reverse = horizontal, smooth = NULL, smooth.method = NULL, smooth.formula = NULL, smooth.se = TRUE, smooth.level = 0.95, smooth.alpha = 0.25, smooth.linewidth = 0.75, smooth.linetype = 3, smooth.colour = NULL, size = NULL, linetype = 1, linewidth = NULL, binwidth = NULL, width = NULL, jitter_seed = NA, violin_scale = "count", legend.position = NULL, legend.title = NULL, legend.reverse = FALSE, legend.barheight = 6, legend.barwidth = 1.5, legend.nbin = 300, legend.italic = FALSE, sankey.node_width = 0.15, sankey.node_whitespace = 0.03, sankey.alpha = 0.5, sankey.remove_axes = NULL, zoom = FALSE, sep = " / ", print = FALSE, text_factor = 1, font = getOption("plot2.font"), theme = getOption("plot2.theme", "theme_minimal2"), background = getOption("plot2.colour_background", "white"), markdown = TRUE, data = NULL, ... )
.data |
data to plot |
x |
plotting 'direction' for the x axis. This can be:
|
y |
values to use for plotting along the y axis. This can be:
|
category , facet
|
plotting 'direction' (
The |
type , y_secondary.type
|
type of visualisation to use. This can be:
|
title , subtitle , caption , tag , x.title , y.title , category.title , legend.title , y_secondary.title
|
a title to use. This can be:
The |
title.linelength |
maximum number of characters per line in the title, before a linebreak occurs |
title.colour |
text colour of the title |
subtitle.linelength |
maximum number of characters per line in the subtitle, before a linebreak occurs |
subtitle.colour |
text colour of the subtitle |
na.replace |
character to put in place of |
na.rm |
remove |
facet.position , facet.fill , facet.bold , facet.italic , facet.size , facet.margin , facet.repeat_lbls_x , facet.repeat_lbls_y , facet.drop , facet.nrow , facet.relative
|
additional settings for the plotting direction |
facet.fixed_y |
a logical to indicate whether all y scales should have the same limits. Defaults to |
facet.fixed_x |
a logical to indicate whether all x scales should have the same breaks. This acts like the inverse of |
x.date_breaks |
breaks to use when the x axis contains dates, will be determined automatically if left blank. This accepts values such as |
x.date_labels |
labels to use when the x axis contains dates, will be determined automatically if left blank. This accepts 'Excel' date-language such as |
x.date_remove_years |
a logical to indicate whether the years of all |
category.focus |
a value of |
colour |
get_colour(s) to set, will be evaluated with |
colour_fill |
get_colour(s) to be used for filling, will be determined automatically if left blank and will be evaluated with |
colour_opacity |
amount of opacity for |
x.lbl_angle |
angle to use for the x axis in a counter-clockwise direction (i.e., a value of |
x.lbl_align |
alignment for the x axis between |
x.lbl_italic |
logical to indicate whether the x labels should in in italics |
x.lbl_taxonomy |
a logical to transform all words of the |
x.remove , y.remove
|
a logical to indicate whether the axis labels and title should be removed |
x.position , y.position
|
position of the axis |
x.max_items , category.max_items , facet.max_items
|
number of maximum items to use, defaults to infinite. All other values will be grouped and summarised using the |
x.max_txt , category.max_txt , facet.max_txt
|
the text to use of values not included number of |
x.breaks , y.breaks
|
a breaks function or numeric vector to use for the axis |
x.n_breaks , y.n_breaks
|
number of breaks, only useful if |
x.transform , y.transform , category.transform
|
a transformation function to use, e.g. |
x.expand , y.expand
|
expansion to use for the axis, can be length 1 or 2. |
x.limits , y.limits
|
limits to use for the axis, can be length 1 or 2. Use |
x.labels , y.labels , y_secondary.labels
|
a labels function or character vector to use for the axis |
x.character |
a logical to indicate whether the values of the x axis should be forced to character. The default is |
x.drop |
logical to indicate whether factor levels should be dropped |
x.mic |
logical to indicate whether the x axis should be formatted as MIC values, by dropping all factor levels and adding missing factors of 2 |
x.zoom , y.zoom
|
a logical to indicate if the axis should be zoomed on the data, by setting |
y.24h |
a logical to indicate whether the y labels and breaks should be formatted as 24-hour sequences |
y.age |
a logical to indicate whether the y labels and breaks should be formatted as ages in years |
y.scientific , y_secondary.scientific
|
a logical to indicate whether the y labels should be formatted in scientific notation. Defaults to |
y.percent , y_secondary.percent
|
a logical to indicate whether the y labels should be formatted as percentages |
y.percent_break |
a value on which the y axis should have breaks |
y_secondary |
values to use for plotting along the secondary y axis. This functionality is poorly supported by |
y_secondary.colour , y_secondary.colour_fill
|
colours to set for the secondary y axis, will be evaluated with |
category.labels , category.percent , category.breaks , category.expand , category.midpoint
|
settings for the plotting direction |
category.limits |
limits to use for a numeric category, can be length 1 or 2. Use |
category.date_breaks |
breaks to use when the category contains dates, will be determined automatically if left blank. This will be passed on to |
category.date_labels |
labels to use when the category contains dates, will be determined automatically if left blank. This accepts 'Excel' date-language such as |
category.character |
a logical to indicate whether the values of the category should be forced to character. The default is |
x.sort , category.sort , facet.sort
|
sorting of the plotting direction, defaults to
|
x.complete , category.complete , facet.complete
|
a value to complete the data. This makes use of |
datalabels |
values to show as datalabels, see also
|
datalabels.round |
number of digits to round the datalabels, applies to both |
datalabels.format |
format to use for datalabels. This can be a function (such as |
datalabels.colour , datalabels.colour_fill , datalabels.size , datalabels.angle , datalabels.lineheight
|
settings for the datalabels |
decimal.mark |
decimal mark, defaults to |
big.mark |
thousands separator, defaults to |
summarise_function |
a function to use if the data has to be summarised, see Examples. This can also be |
stacked |
a logical to indicate that values must be stacked |
stackedpercent |
a logical to indicate that values must be 100% stacked |
horizontal |
a logical to turn the plot 90 degrees using |
reverse |
a logical to reverse the values of |
smooth |
a logical to add a smooth. In histograms, this will add the density count as an overlaying line (default: |
smooth.method , smooth.formula , smooth.se , smooth.level , smooth.alpha , smooth.linewidth , smooth.linetype , smooth.colour
|
settings for |
size |
size of the geom. Defaults to |
linetype |
linetype of the geom, only suitable for geoms that draw lines. Defaults to 1. |
linewidth |
linewidth of the geom, only suitable for geoms that draw lines. Defaults to: |
binwidth |
width of bins (only useful for |
width |
width of the geom. Defaults to |
jitter_seed |
seed (randomisation factor) to be set when using |
violin_scale |
scale to be set when using |
legend.position |
position of the legend, must be |
legend.reverse , legend.barheight , legend.barwidth , legend.nbin , legend.italic
|
other settings for the legend |
sankey.node_width |
width of the vertical nodes in a Sankey plot (i.e., when |
sankey.node_whitespace |
whitespace between the nodes |
sankey.alpha |
alpha of the flows in a Sankey plot (i.e., when |
sankey.remove_axes |
logical to indicate whether all axes must be removed in a Sankey plot (i.e., when |
zoom |
a logical to indicate if the plot should be scaled to the data, i.e., not having the x and y axes to start at 0. This will set |
sep |
separator character to use if multiple columns are given to either of the three directions: |
print |
a logical to indicate if the result should be printed instead of just returned |
text_factor |
text factor to use, which will apply to all texts shown in the plot |
font |
font (family) to use, can be set with |
theme |
a valid |
background |
the background colour of the entire plot, can also be |
markdown |
a logical to turn all labels and titles into plotmath expressions, by converting common markdown language using the |
data |
substitute for |
... |
any argument to give to the geom. This will override automatically-set settings for the geom. |
The plot2()
function is a convenient wrapper around many ggplot2
functions such as ggplot()
, aes()
, geom_col()
, facet_wrap()
, labs()
, etc., and provides:
Writing as few lines of codes as possible
Easy plotting in three 'directions': x
(the regular x axis), category
(replaces 'fill' and 'colour') and facet
Automatic setting of these 'directions' based on the input data
Setting in-place calculations for all plotting directions and even y
Easy way for sorting data in many ways (such as on alphabet, numeric value, frequency, original data order), by setting a single argument for the 'direction': x.sort
, category.sort
and facet.sort
Easy limiting values, e.g. by setting x.max_items = 5
or category.max_items = 5
Markdown support for any title text, with any theme
Integrated support for any Google Font and any installed system font
An extra clean, minimalistic theme with a lot of whitespace (but without unnecessary margins) that is ideal for printing: theme_minimal2()
Some conveniences from Microsoft Excel:
The y axis starts at 0 if possible
The y scale expands at the top to be better able to interpret all data points
Date breaks can be written in a human-readable format (such as "d mmm yyyy")
Labels with data values can easily be printed and are automatically determined
Support for any ggplot2
extension based on ggplot2::fortify()
The ggplot2
package in conjunction with the tidyr
, forcats
and cleaner
packages can provide above functionalities, but the goal of the plot2()
function is to generalise this into one function. The generic plot2()
function currently has 150 arguments, all with a default value. Less typing, faster coding.
a ggplot
object
options(plot2.colour = NULL, plot2.colour_sf_fill = NULL) head(iris) # no variables determined, so plot2() will try for itself - # the type will be points since the first two variables are numeric iris |> plot2() # if x and y are set, no additional mapping will be set: iris |> plot2(Sepal.Width, Sepal.Length) iris |> plot2(Species, Sepal.Length) # the arguments are in this order: x, y, category, facet iris |> plot2(Sepal.Length, Sepal.Width, Petal.Length, Species) iris |> plot2(Sepal.Length, Sepal.Width, Petal.Length, Species, colour = "viridis") # set the viridis colours iris |> plot2(Sepal.Length, Sepal.Width, Petal.Length, Species, colour = c("white", "red", "black")) # set own colours # y can also be multiple (named) columns iris |> plot2(x = Sepal.Length, y = c(Length = Petal.Length, Width = Petal.Width), category.title = "Petal property") iris |> # with included selection helpers such as where(), starts_with(), etc.: plot2(x = Species, y = where(is.double)) # support for secondary y axis mtcars |> plot2(x = mpg, y = hp, y_secondary = disp ^ 2, y_secondary.scientific = TRUE, title = "Secondary y axis sets colour to the axis titles") admitted_patients # the arguments are in this order: x, y, category, facet admitted_patients |> plot2(hospital, age) admitted_patients |> plot2(hospital, age, gender) admitted_patients |> plot2(hospital, age, gender, ward) # or use any function for y admitted_patients |> plot2(hospital, median(age), gender, ward) admitted_patients |> plot2(hospital, n(), gender, ward) admitted_patients |> plot2(x = hospital, y = age, category = gender, colour = c("F" = "#3F681C", "M" = "#375E97"), colour_fill = "#FFBB00AA", linewidth = 1.25, y.age = TRUE) admitted_patients |> plot2(age, type = "hist") # even titles support calculations, including support for {glue} admitted_patients |> plot2(age, type = "hist", title = paste("Based on n =", n_distinct(patient_id), "patients"), subtitle = paste("Total rows:", n()), caption = glue::glue("From {n_distinct(hospital)} hospitals"), x.title = paste("Age ranging from", paste(range(age), collapse = " to "))) # the default type is column, datalabels are automatically # set in non-continuous types: admitted_patients |> plot2(hospital, n(), gender) admitted_patients |> plot2(hospital, n(), gender, stacked = TRUE) admitted_patients |> plot2(hospital, n(), gender, stackedpercent = TRUE) # two categories might benefit from a dumbbell plot: admitted_patients |> plot2(hospital, median(age), gender, type = "dumbbell") # sort on any direction: admitted_patients |> plot2(hospital, n(), gender, x.sort = "freq-asc", stacked = TRUE) admitted_patients |> plot2(hospital, n(), gender, x.sort = c("B", "D", "A"), # missing values ("C") will be added category.sort = "alpha-desc", stacked = TRUE) # support for Sankey plots Titanic |> # a table from base R plot2(x = c(Age, Class, Survived), category = Sex, type = "sankey") # matrix support, such as for cor() correlation_matrix <- cor(mtcars) class(correlation_matrix) head(correlation_matrix) correlation_matrix |> plot2() correlation_matrix |> plot2(colour = c("blue3", "white", "red3"), datalabels = TRUE, category.title = "*r*-value", title = "Correlation matrix") # plot2() supports all S3 extensions available through # ggplot2::fortify(), such as regression models: lm(mpg ~ hp, data = mtcars) |> plot2(x = mpg ^ -3, y = hp ^ 2, smooth = TRUE, smooth.method = "lm", smooth.formula = "y ~ log(x)", title = "Titles/captions *support* **markdown**", subtitle = "Axis titles contain the square notation: x^2") # sf objects (geographic plots, 'simple features') are also supported if (require("sf")) { netherlands |> plot2(datalabels = paste0(province, "\n", round(area_km2))) } # support for any system or Google font mtcars |> plot2(mpg, hp, font = "Rock Salt", title = "This plot uses a Google Font")
options(plot2.colour = NULL, plot2.colour_sf_fill = NULL) head(iris) # no variables determined, so plot2() will try for itself - # the type will be points since the first two variables are numeric iris |> plot2() # if x and y are set, no additional mapping will be set: iris |> plot2(Sepal.Width, Sepal.Length) iris |> plot2(Species, Sepal.Length) # the arguments are in this order: x, y, category, facet iris |> plot2(Sepal.Length, Sepal.Width, Petal.Length, Species) iris |> plot2(Sepal.Length, Sepal.Width, Petal.Length, Species, colour = "viridis") # set the viridis colours iris |> plot2(Sepal.Length, Sepal.Width, Petal.Length, Species, colour = c("white", "red", "black")) # set own colours # y can also be multiple (named) columns iris |> plot2(x = Sepal.Length, y = c(Length = Petal.Length, Width = Petal.Width), category.title = "Petal property") iris |> # with included selection helpers such as where(), starts_with(), etc.: plot2(x = Species, y = where(is.double)) # support for secondary y axis mtcars |> plot2(x = mpg, y = hp, y_secondary = disp ^ 2, y_secondary.scientific = TRUE, title = "Secondary y axis sets colour to the axis titles") admitted_patients # the arguments are in this order: x, y, category, facet admitted_patients |> plot2(hospital, age) admitted_patients |> plot2(hospital, age, gender) admitted_patients |> plot2(hospital, age, gender, ward) # or use any function for y admitted_patients |> plot2(hospital, median(age), gender, ward) admitted_patients |> plot2(hospital, n(), gender, ward) admitted_patients |> plot2(x = hospital, y = age, category = gender, colour = c("F" = "#3F681C", "M" = "#375E97"), colour_fill = "#FFBB00AA", linewidth = 1.25, y.age = TRUE) admitted_patients |> plot2(age, type = "hist") # even titles support calculations, including support for {glue} admitted_patients |> plot2(age, type = "hist", title = paste("Based on n =", n_distinct(patient_id), "patients"), subtitle = paste("Total rows:", n()), caption = glue::glue("From {n_distinct(hospital)} hospitals"), x.title = paste("Age ranging from", paste(range(age), collapse = " to "))) # the default type is column, datalabels are automatically # set in non-continuous types: admitted_patients |> plot2(hospital, n(), gender) admitted_patients |> plot2(hospital, n(), gender, stacked = TRUE) admitted_patients |> plot2(hospital, n(), gender, stackedpercent = TRUE) # two categories might benefit from a dumbbell plot: admitted_patients |> plot2(hospital, median(age), gender, type = "dumbbell") # sort on any direction: admitted_patients |> plot2(hospital, n(), gender, x.sort = "freq-asc", stacked = TRUE) admitted_patients |> plot2(hospital, n(), gender, x.sort = c("B", "D", "A"), # missing values ("C") will be added category.sort = "alpha-desc", stacked = TRUE) # support for Sankey plots Titanic |> # a table from base R plot2(x = c(Age, Class, Survived), category = Sex, type = "sankey") # matrix support, such as for cor() correlation_matrix <- cor(mtcars) class(correlation_matrix) head(correlation_matrix) correlation_matrix |> plot2() correlation_matrix |> plot2(colour = c("blue3", "white", "red3"), datalabels = TRUE, category.title = "*r*-value", title = "Correlation matrix") # plot2() supports all S3 extensions available through # ggplot2::fortify(), such as regression models: lm(mpg ~ hp, data = mtcars) |> plot2(x = mpg ^ -3, y = hp ^ 2, smooth = TRUE, smooth.method = "lm", smooth.formula = "y ~ log(x)", title = "Titles/captions *support* **markdown**", subtitle = "Axis titles contain the square notation: x^2") # sf objects (geographic plots, 'simple features') are also supported if (require("sf")) { netherlands |> plot2(datalabels = paste0(province, "\n", round(area_km2))) } # support for any system or Google font mtcars |> plot2(mpg, hp, font = "Rock Salt", title = "This plot uses a Google Font")
plot2()
These are the implemented methods for different S3 classes to be used in plot2()
. Since they have an extensive list of arguments, they are placed here on a separate manual page.
## Default S3 method: plot2( .data, x = NULL, y = NULL, category = NULL, facet = NULL, type = NULL, x.title = TRUE, y.title = TRUE, category.title = NULL, title = NULL, subtitle = NULL, caption = NULL, tag = NULL, title.linelength = 60, title.colour = getOption("plot2.colour_font_primary", "black"), subtitle.linelength = 60, subtitle.colour = getOption("plot2.colour_font_secondary", "grey35"), na.replace = "", na.rm = FALSE, facet.position = "top", facet.fill = NULL, facet.bold = TRUE, facet.italic = FALSE, facet.size = 10, facet.margin = 8, facet.repeat_lbls_x = TRUE, facet.repeat_lbls_y = NULL, facet.fixed_y = NULL, facet.fixed_x = NULL, facet.drop = FALSE, facet.nrow = NULL, facet.relative = FALSE, x.date_breaks = NULL, x.date_labels = NULL, x.date_remove_years = NULL, category.focus = NULL, colour = getOption("plot2.colour", "ggplot2"), colour_fill = NULL, colour_opacity = 0, x.lbl_angle = 0, x.lbl_align = NULL, x.lbl_italic = FALSE, x.lbl_taxonomy = FALSE, x.remove = FALSE, x.position = "bottom", x.max_items = Inf, x.max_txt = "(rest, x%n)", category.max_items = Inf, category.max_txt = "(rest, x%n)", facet.max_items = Inf, facet.max_txt = "(rest, x%n)", x.breaks = NULL, x.n_breaks = NULL, x.transform = "identity", x.expand = NULL, x.limits = NULL, x.labels = NULL, x.character = NULL, x.drop = FALSE, x.mic = FALSE, x.zoom = FALSE, y.remove = FALSE, y.24h = FALSE, y.age = FALSE, y.scientific = NULL, y.percent = FALSE, y.percent_break = 0.1, y.breaks = NULL, y.n_breaks = NULL, y.limits = NULL, y.labels = NULL, y.expand = NULL, y.transform = "identity", y.position = "left", y.zoom = FALSE, y_secondary = NULL, y_secondary.type = type, y_secondary.title = TRUE, y_secondary.colour = get_colour(getOption("plot2.colour", "ggplot2"), 2), y_secondary.colour_fill = get_colour(getOption("plot2.colour", "ggplot2"), 2), y_secondary.scientific = NULL, y_secondary.percent = FALSE, y_secondary.labels = NULL, category.labels = NULL, category.percent = FALSE, category.breaks = NULL, category.limits = NULL, category.expand = 0, category.midpoint = NULL, category.transform = "identity", category.date_breaks = NULL, category.date_labels = NULL, category.character = NULL, x.sort = NULL, category.sort = TRUE, facet.sort = TRUE, x.complete = NULL, category.complete = NULL, facet.complete = NULL, datalabels = TRUE, datalabels.round = ifelse(y.percent, 2, 1), datalabels.format = "%n", datalabels.colour = "grey25", datalabels.colour_fill = NULL, datalabels.size = (3 * text_factor), datalabels.angle = 0, datalabels.lineheight = 1, decimal.mark = dec_mark(), big.mark = big_mark(), summarise_function = base::sum, stacked = FALSE, stackedpercent = FALSE, horizontal = FALSE, reverse = horizontal, smooth = NULL, smooth.method = NULL, smooth.formula = NULL, smooth.se = TRUE, smooth.level = 0.95, smooth.alpha = 0.25, smooth.linewidth = 0.75, smooth.linetype = 3, smooth.colour = NULL, size = NULL, linetype = 1, linewidth = NULL, binwidth = NULL, width = NULL, jitter_seed = NA, violin_scale = "count", legend.position = NULL, legend.title = NULL, legend.reverse = FALSE, legend.barheight = 6, legend.barwidth = 1.5, legend.nbin = 300, legend.italic = FALSE, sankey.node_width = 0.15, sankey.node_whitespace = 0.03, sankey.alpha = 0.5, sankey.remove_axes = NULL, zoom = FALSE, sep = " / ", print = FALSE, text_factor = 1, font = getOption("plot2.font"), theme = getOption("plot2.theme", "theme_minimal2"), background = getOption("plot2.colour_background", "white"), markdown = TRUE, ... ) ## S3 method for class 'formula' plot2( .data = NULL, x = NULL, y = NULL, category = NULL, facet = NULL, type = NULL, x.title = TRUE, y.title = TRUE, category.title = NULL, title = NULL, subtitle = NULL, caption = NULL, tag = NULL, title.linelength = 60, title.colour = getOption("plot2.colour_font_primary", "black"), subtitle.linelength = 60, subtitle.colour = getOption("plot2.colour_font_secondary", "grey35"), na.replace = "", na.rm = FALSE, facet.position = "top", facet.fill = NULL, facet.bold = TRUE, facet.italic = FALSE, facet.size = 10, facet.margin = 8, facet.repeat_lbls_x = TRUE, facet.repeat_lbls_y = NULL, facet.fixed_y = NULL, facet.fixed_x = NULL, facet.drop = FALSE, facet.nrow = NULL, facet.relative = FALSE, x.date_breaks = NULL, x.date_labels = NULL, x.date_remove_years = NULL, category.focus = NULL, colour = getOption("plot2.colour", "ggplot2"), colour_fill = NULL, colour_opacity = 0, x.lbl_angle = 0, x.lbl_align = NULL, x.lbl_italic = FALSE, x.lbl_taxonomy = FALSE, x.remove = FALSE, x.position = "bottom", x.max_items = Inf, x.max_txt = "(rest, x%n)", category.max_items = Inf, category.max_txt = "(rest, x%n)", facet.max_items = Inf, facet.max_txt = "(rest, x%n)", x.breaks = NULL, x.n_breaks = NULL, x.transform = "identity", x.expand = NULL, x.limits = NULL, x.labels = NULL, x.character = NULL, x.drop = FALSE, x.mic = FALSE, x.zoom = FALSE, y.remove = FALSE, y.24h = FALSE, y.age = FALSE, y.scientific = NULL, y.percent = FALSE, y.percent_break = 0.1, y.breaks = NULL, y.n_breaks = NULL, y.limits = NULL, y.labels = NULL, y.expand = NULL, y.transform = "identity", y.position = "left", y.zoom = FALSE, y_secondary = NULL, y_secondary.type = type, y_secondary.title = TRUE, y_secondary.colour = get_colour(getOption("plot2.colour", "ggplot2"), 2), y_secondary.colour_fill = get_colour(getOption("plot2.colour", "ggplot2"), 2), y_secondary.scientific = NULL, y_secondary.percent = FALSE, y_secondary.labels = NULL, category.labels = NULL, category.percent = FALSE, category.breaks = NULL, category.limits = NULL, category.expand = 0, category.midpoint = NULL, category.transform = "identity", category.date_breaks = NULL, category.date_labels = NULL, category.character = NULL, x.sort = NULL, category.sort = TRUE, facet.sort = TRUE, x.complete = NULL, category.complete = NULL, facet.complete = NULL, datalabels = TRUE, datalabels.round = ifelse(y.percent, 2, 1), datalabels.format = "%n", datalabels.colour = "grey25", datalabels.colour_fill = NULL, datalabels.size = (3 * text_factor), datalabels.angle = 0, datalabels.lineheight = 1, decimal.mark = dec_mark(), big.mark = big_mark(), summarise_function = base::sum, stacked = FALSE, stackedpercent = FALSE, horizontal = FALSE, reverse = horizontal, smooth = NULL, smooth.method = NULL, smooth.formula = NULL, smooth.se = TRUE, smooth.level = 0.95, smooth.alpha = 0.25, smooth.linewidth = 0.75, smooth.linetype = 3, smooth.colour = NULL, size = NULL, linetype = 1, linewidth = NULL, binwidth = NULL, width = NULL, jitter_seed = NA, violin_scale = "count", legend.position = NULL, legend.title = NULL, legend.reverse = FALSE, legend.barheight = 6, legend.barwidth = 1.5, legend.nbin = 300, legend.italic = FALSE, sankey.node_width = 0.15, sankey.node_whitespace = 0.03, sankey.alpha = 0.5, sankey.remove_axes = NULL, zoom = FALSE, sep = " / ", print = FALSE, text_factor = 1, font = getOption("plot2.font"), theme = getOption("plot2.theme", "theme_minimal2"), background = getOption("plot2.colour_background", "white"), markdown = TRUE, data = NULL, ... ) ## S3 method for class 'freq' plot2( .data, x = .data$item, y = .data$count, category = NULL, facet = NULL, type = NULL, x.title = "Item", y.title = "Count", category.title = TRUE, title = NULL, subtitle = NULL, caption = NULL, tag = NULL, title.linelength = 60, title.colour = getOption("plot2.colour_font_primary", "black"), subtitle.linelength = 60, subtitle.colour = getOption("plot2.colour_font_secondary", "grey35"), na.replace = "", na.rm = FALSE, facet.position = "top", facet.fill = NULL, facet.bold = TRUE, facet.italic = FALSE, facet.size = 10, facet.margin = 8, facet.repeat_lbls_x = TRUE, facet.repeat_lbls_y = NULL, facet.fixed_y = NULL, facet.fixed_x = NULL, facet.drop = FALSE, facet.nrow = NULL, facet.relative = FALSE, x.date_breaks = NULL, x.date_labels = NULL, x.date_remove_years = NULL, category.focus = NULL, colour = getOption("plot2.colour", "ggplot2"), colour_fill = NULL, colour_opacity = 0, x.lbl_angle = 0, x.lbl_align = NULL, x.lbl_italic = FALSE, x.lbl_taxonomy = FALSE, x.remove = FALSE, x.position = "bottom", x.max_items = Inf, x.max_txt = "(rest, x%n)", category.max_items = Inf, category.max_txt = "(rest, x%n)", facet.max_items = Inf, facet.max_txt = "(rest, x%n)", x.breaks = NULL, x.n_breaks = NULL, x.transform = "identity", x.expand = NULL, x.limits = NULL, x.labels = NULL, x.character = NULL, x.drop = FALSE, x.mic = FALSE, x.zoom = FALSE, y.remove = FALSE, y.24h = FALSE, y.age = FALSE, y.scientific = NULL, y.percent = FALSE, y.percent_break = 0.1, y.breaks = NULL, y.n_breaks = NULL, y.limits = NULL, y.labels = NULL, y.expand = NULL, y.transform = "identity", y.position = "left", y.zoom = FALSE, y_secondary = NULL, y_secondary.type = type, y_secondary.title = TRUE, y_secondary.colour = get_colour(getOption("plot2.colour", "ggplot2"), 2), y_secondary.colour_fill = get_colour(getOption("plot2.colour", "ggplot2"), 2), y_secondary.scientific = NULL, y_secondary.percent = FALSE, y_secondary.labels = NULL, category.labels = NULL, category.percent = FALSE, category.breaks = NULL, category.limits = NULL, category.expand = 0, category.midpoint = NULL, category.transform = "identity", category.date_breaks = NULL, category.date_labels = NULL, category.character = NULL, x.sort = "freq-desc", category.sort = TRUE, facet.sort = TRUE, x.complete = NULL, category.complete = NULL, facet.complete = NULL, datalabels = TRUE, datalabels.round = ifelse(y.percent, 2, 1), datalabels.format = "%n", datalabels.colour = "grey25", datalabels.colour_fill = NULL, datalabels.size = (3 * text_factor), datalabels.angle = 0, datalabels.lineheight = 1, decimal.mark = dec_mark(), big.mark = big_mark(), summarise_function = base::sum, stacked = FALSE, stackedpercent = FALSE, horizontal = FALSE, reverse = horizontal, smooth = NULL, smooth.method = NULL, smooth.formula = NULL, smooth.se = TRUE, smooth.level = 0.95, smooth.alpha = 0.25, smooth.linewidth = 0.75, smooth.linetype = 3, smooth.colour = NULL, size = NULL, linetype = 1, linewidth = NULL, binwidth = NULL, width = NULL, jitter_seed = NA, violin_scale = "count", legend.position = NULL, legend.title = NULL, legend.reverse = FALSE, legend.barheight = 6, legend.barwidth = 1.5, legend.nbin = 300, legend.italic = FALSE, sankey.node_width = 0.15, sankey.node_whitespace = 0.03, sankey.alpha = 0.5, sankey.remove_axes = NULL, zoom = FALSE, sep = " / ", print = FALSE, text_factor = 1, font = getOption("plot2.font"), theme = getOption("plot2.theme", "theme_minimal2"), background = getOption("plot2.colour_background", "white"), markdown = TRUE, ... ) ## S3 method for class 'sf' plot2( .data, x = NULL, y = NULL, category = NULL, facet = NULL, type = NULL, x.title = FALSE, y.title = FALSE, category.title = NULL, title = NULL, subtitle = NULL, caption = NULL, tag = NULL, title.linelength = 60, title.colour = getOption("plot2.colour_font_primary", "black"), subtitle.linelength = 60, subtitle.colour = getOption("plot2.colour_font_secondary", "grey35"), na.replace = "", na.rm = FALSE, facet.position = "top", facet.fill = NULL, facet.bold = TRUE, facet.italic = FALSE, facet.size = 10, facet.margin = 8, facet.repeat_lbls_x = TRUE, facet.repeat_lbls_y = NULL, facet.fixed_y = NULL, facet.fixed_x = NULL, facet.drop = FALSE, facet.nrow = NULL, facet.relative = FALSE, x.date_breaks = NULL, x.date_labels = NULL, x.date_remove_years = NULL, category.focus = NULL, colour = getOption("plot2.colour_sf", "grey50"), colour_fill = getOption("plot2.colour_sf_fill", getOption("plot2.colour", "ggplot2")), colour_opacity = 0, x.lbl_angle = 0, x.lbl_align = NULL, x.lbl_italic = FALSE, x.lbl_taxonomy = FALSE, x.remove = FALSE, x.position = "bottom", x.max_items = Inf, x.max_txt = "(rest, x%n)", category.max_items = Inf, category.max_txt = "(rest, x%n)", facet.max_items = Inf, facet.max_txt = "(rest, x%n)", x.breaks = NULL, x.n_breaks = NULL, x.transform = "identity", x.expand = 0, x.limits = NULL, x.labels = NULL, x.character = NULL, x.drop = FALSE, x.mic = FALSE, x.zoom = FALSE, y.remove = FALSE, y.24h = FALSE, y.age = FALSE, y.scientific = NULL, y.percent = FALSE, y.percent_break = 0.1, y.breaks = NULL, y.n_breaks = NULL, y.limits = NULL, y.labels = NULL, y.expand = 0, y.transform = "identity", y.position = "left", y.zoom = FALSE, y_secondary = NULL, y_secondary.type = type, y_secondary.title = TRUE, y_secondary.colour = get_colour(getOption("plot2.colour", "ggplot2"), 2), y_secondary.colour_fill = get_colour(getOption("plot2.colour", "ggplot2"), 2), y_secondary.scientific = NULL, y_secondary.percent = FALSE, y_secondary.labels = NULL, category.labels = NULL, category.percent = FALSE, category.breaks = NULL, category.limits = NULL, category.expand = 0, category.midpoint = NULL, category.transform = "identity", category.date_breaks = NULL, category.date_labels = NULL, category.character = NULL, x.sort = NULL, category.sort = TRUE, facet.sort = TRUE, x.complete = NULL, category.complete = NULL, facet.complete = NULL, datalabels = TRUE, datalabels.round = ifelse(y.percent, 2, 1), datalabels.format = NULL, datalabels.colour = "black", datalabels.colour_fill = NULL, datalabels.size = (3 * text_factor), datalabels.angle = 0, datalabels.lineheight = 1, decimal.mark = dec_mark(), big.mark = big_mark(), summarise_function = base::sum, stacked = FALSE, stackedpercent = FALSE, horizontal = FALSE, reverse = horizontal, smooth = NULL, smooth.method = NULL, smooth.formula = NULL, smooth.se = TRUE, smooth.level = 0.95, smooth.alpha = 0.25, smooth.linewidth = 0.75, smooth.linetype = 3, smooth.colour = NULL, size = NULL, linetype = 1, linewidth = NULL, binwidth = NULL, width = NULL, jitter_seed = NA, violin_scale = "count", legend.position = "right", legend.title = NULL, legend.reverse = FALSE, legend.barheight = 6, legend.barwidth = 1.5, legend.nbin = 300, legend.italic = FALSE, sankey.node_width = 0.15, sankey.node_whitespace = 0.03, sankey.alpha = 0.5, sankey.remove_axes = NULL, zoom = FALSE, sep = " / ", print = FALSE, text_factor = 1, font = getOption("plot2.font"), theme = theme_minimal2(panel.grid.major = element_blank(), panel.grid.minor = element_blank(), panel.border = element_blank(), plot.margin = unit(c(5, 5, 0, 0), units = "pt"), axis.title = element_blank(), axis.text = element_blank(), axis.line = element_blank(), axis.ticks = element_blank()), background = getOption("plot2.colour_background", "white"), markdown = TRUE, data = NULL, crs = NULL, datalabels.centroid = NULL, ... ) ## S3 method for class 'data.frame' plot2( .data, x = NULL, y = NULL, category = NULL, facet = NULL, type = NULL, x.title = TRUE, y.title = TRUE, category.title = NULL, title = NULL, subtitle = NULL, caption = NULL, tag = NULL, title.linelength = 60, title.colour = getOption("plot2.colour_font_primary", "black"), subtitle.linelength = 60, subtitle.colour = getOption("plot2.colour_font_secondary", "grey35"), na.replace = "", na.rm = FALSE, facet.position = "top", facet.fill = NULL, facet.bold = TRUE, facet.italic = FALSE, facet.size = 10, facet.margin = 8, facet.repeat_lbls_x = TRUE, facet.repeat_lbls_y = NULL, facet.fixed_y = NULL, facet.fixed_x = NULL, facet.drop = FALSE, facet.nrow = NULL, facet.relative = FALSE, x.date_breaks = NULL, x.date_labels = NULL, x.date_remove_years = NULL, category.focus = NULL, colour = getOption("plot2.colour", "ggplot2"), colour_fill = NULL, colour_opacity = 0, x.lbl_angle = 0, x.lbl_align = NULL, x.lbl_italic = FALSE, x.lbl_taxonomy = FALSE, x.remove = FALSE, x.position = "bottom", x.max_items = Inf, x.max_txt = "(rest, x%n)", category.max_items = Inf, category.max_txt = "(rest, x%n)", facet.max_items = Inf, facet.max_txt = "(rest, x%n)", x.breaks = NULL, x.n_breaks = NULL, x.transform = "identity", x.expand = NULL, x.limits = NULL, x.labels = NULL, x.character = NULL, x.drop = FALSE, x.mic = FALSE, x.zoom = FALSE, y.remove = FALSE, y.24h = FALSE, y.age = FALSE, y.scientific = NULL, y.percent = FALSE, y.percent_break = 0.1, y.breaks = NULL, y.n_breaks = NULL, y.limits = NULL, y.labels = NULL, y.expand = NULL, y.transform = "identity", y.position = "left", y.zoom = FALSE, y_secondary = NULL, y_secondary.type = type, y_secondary.title = TRUE, y_secondary.colour = get_colour(getOption("plot2.colour", "ggplot2"), 2), y_secondary.colour_fill = get_colour(getOption("plot2.colour", "ggplot2"), 2), y_secondary.scientific = NULL, y_secondary.percent = FALSE, y_secondary.labels = NULL, category.labels = NULL, category.percent = FALSE, category.breaks = NULL, category.limits = NULL, category.expand = 0, category.midpoint = NULL, category.transform = "identity", category.date_breaks = NULL, category.date_labels = NULL, category.character = NULL, x.sort = NULL, category.sort = TRUE, facet.sort = TRUE, x.complete = NULL, category.complete = NULL, facet.complete = NULL, datalabels = TRUE, datalabels.round = ifelse(y.percent, 2, 1), datalabels.format = "%n", datalabels.colour = "grey25", datalabels.colour_fill = NULL, datalabels.size = (3 * text_factor), datalabels.angle = 0, datalabels.lineheight = 1, decimal.mark = dec_mark(), big.mark = big_mark(), summarise_function = base::sum, stacked = FALSE, stackedpercent = FALSE, horizontal = FALSE, reverse = horizontal, smooth = NULL, smooth.method = NULL, smooth.formula = NULL, smooth.se = TRUE, smooth.level = 0.95, smooth.alpha = 0.25, smooth.linewidth = 0.75, smooth.linetype = 3, smooth.colour = NULL, size = NULL, linetype = 1, linewidth = NULL, binwidth = NULL, width = NULL, jitter_seed = NA, violin_scale = "count", legend.position = NULL, legend.title = NULL, legend.reverse = FALSE, legend.barheight = 6, legend.barwidth = 1.5, legend.nbin = 300, legend.italic = FALSE, sankey.node_width = 0.15, sankey.node_whitespace = 0.03, sankey.alpha = 0.5, sankey.remove_axes = NULL, zoom = FALSE, sep = " / ", print = FALSE, text_factor = 1, font = getOption("plot2.font"), theme = getOption("plot2.theme", "theme_minimal2"), background = getOption("plot2.colour_background", "white"), markdown = TRUE, ... ) ## S3 method for class 'matrix' plot2( .data, x = NULL, y = NULL, category = NULL, facet = NULL, type = NULL, x.title = FALSE, y.title = FALSE, category.title = NULL, title = NULL, subtitle = NULL, caption = NULL, tag = NULL, title.linelength = 60, title.colour = getOption("plot2.colour_font_primary", "black"), subtitle.linelength = 60, subtitle.colour = getOption("plot2.colour_font_secondary", "grey35"), na.replace = "", na.rm = FALSE, facet.position = "top", facet.fill = NULL, facet.bold = TRUE, facet.italic = FALSE, facet.size = 10, facet.margin = 8, facet.repeat_lbls_x = TRUE, facet.repeat_lbls_y = NULL, facet.fixed_y = NULL, facet.fixed_x = NULL, facet.drop = FALSE, facet.nrow = NULL, facet.relative = FALSE, x.date_breaks = NULL, x.date_labels = NULL, x.date_remove_years = NULL, category.focus = NULL, colour = getOption("plot2.colour", "ggplot2"), colour_fill = NULL, colour_opacity = 0, x.lbl_angle = 0, x.lbl_align = NULL, x.lbl_italic = FALSE, x.lbl_taxonomy = FALSE, x.remove = FALSE, x.position = "bottom", x.max_items = Inf, x.max_txt = "(rest, x%n)", category.max_items = Inf, category.max_txt = "(rest, x%n)", facet.max_items = Inf, facet.max_txt = "(rest, x%n)", x.breaks = NULL, x.n_breaks = NULL, x.transform = "identity", x.expand = NULL, x.limits = NULL, x.labels = NULL, x.character = NULL, x.drop = FALSE, x.mic = FALSE, x.zoom = FALSE, y.remove = FALSE, y.24h = FALSE, y.age = FALSE, y.scientific = NULL, y.percent = FALSE, y.percent_break = 0.1, y.breaks = NULL, y.n_breaks = NULL, y.limits = NULL, y.labels = NULL, y.expand = NULL, y.transform = "identity", y.position = "left", y.zoom = FALSE, y_secondary = NULL, y_secondary.type = type, y_secondary.title = TRUE, y_secondary.colour = get_colour(getOption("plot2.colour", "ggplot2"), 2), y_secondary.colour_fill = get_colour(getOption("plot2.colour", "ggplot2"), 2), y_secondary.scientific = NULL, y_secondary.percent = FALSE, y_secondary.labels = NULL, category.labels = NULL, category.percent = FALSE, category.breaks = NULL, category.limits = NULL, category.expand = 0, category.midpoint = NULL, category.transform = "identity", category.date_breaks = NULL, category.date_labels = NULL, category.character = NULL, x.sort = NULL, category.sort = TRUE, facet.sort = TRUE, x.complete = NULL, category.complete = NULL, facet.complete = NULL, datalabels = TRUE, datalabels.round = ifelse(y.percent, 2, 1), datalabels.format = "%n", datalabels.colour = "grey25", datalabels.colour_fill = NULL, datalabels.size = (3 * text_factor), datalabels.angle = 0, datalabels.lineheight = 1, decimal.mark = dec_mark(), big.mark = big_mark(), summarise_function = base::sum, stacked = FALSE, stackedpercent = FALSE, horizontal = FALSE, reverse = horizontal, smooth = NULL, smooth.method = NULL, smooth.formula = NULL, smooth.se = TRUE, smooth.level = 0.95, smooth.alpha = 0.25, smooth.linewidth = 0.75, smooth.linetype = 3, smooth.colour = NULL, size = NULL, linetype = 1, linewidth = NULL, binwidth = NULL, width = NULL, jitter_seed = NA, violin_scale = "count", legend.position = NULL, legend.title = NULL, legend.reverse = FALSE, legend.barheight = 6, legend.barwidth = 1.5, legend.nbin = 300, legend.italic = FALSE, sankey.node_width = 0.15, sankey.node_whitespace = 0.03, sankey.alpha = 0.5, sankey.remove_axes = NULL, zoom = FALSE, sep = " / ", print = FALSE, text_factor = 1, font = getOption("plot2.font"), theme = getOption("plot2.theme", "theme_minimal2"), background = getOption("plot2.colour_background", "white"), markdown = TRUE, ... )
## Default S3 method: plot2( .data, x = NULL, y = NULL, category = NULL, facet = NULL, type = NULL, x.title = TRUE, y.title = TRUE, category.title = NULL, title = NULL, subtitle = NULL, caption = NULL, tag = NULL, title.linelength = 60, title.colour = getOption("plot2.colour_font_primary", "black"), subtitle.linelength = 60, subtitle.colour = getOption("plot2.colour_font_secondary", "grey35"), na.replace = "", na.rm = FALSE, facet.position = "top", facet.fill = NULL, facet.bold = TRUE, facet.italic = FALSE, facet.size = 10, facet.margin = 8, facet.repeat_lbls_x = TRUE, facet.repeat_lbls_y = NULL, facet.fixed_y = NULL, facet.fixed_x = NULL, facet.drop = FALSE, facet.nrow = NULL, facet.relative = FALSE, x.date_breaks = NULL, x.date_labels = NULL, x.date_remove_years = NULL, category.focus = NULL, colour = getOption("plot2.colour", "ggplot2"), colour_fill = NULL, colour_opacity = 0, x.lbl_angle = 0, x.lbl_align = NULL, x.lbl_italic = FALSE, x.lbl_taxonomy = FALSE, x.remove = FALSE, x.position = "bottom", x.max_items = Inf, x.max_txt = "(rest, x%n)", category.max_items = Inf, category.max_txt = "(rest, x%n)", facet.max_items = Inf, facet.max_txt = "(rest, x%n)", x.breaks = NULL, x.n_breaks = NULL, x.transform = "identity", x.expand = NULL, x.limits = NULL, x.labels = NULL, x.character = NULL, x.drop = FALSE, x.mic = FALSE, x.zoom = FALSE, y.remove = FALSE, y.24h = FALSE, y.age = FALSE, y.scientific = NULL, y.percent = FALSE, y.percent_break = 0.1, y.breaks = NULL, y.n_breaks = NULL, y.limits = NULL, y.labels = NULL, y.expand = NULL, y.transform = "identity", y.position = "left", y.zoom = FALSE, y_secondary = NULL, y_secondary.type = type, y_secondary.title = TRUE, y_secondary.colour = get_colour(getOption("plot2.colour", "ggplot2"), 2), y_secondary.colour_fill = get_colour(getOption("plot2.colour", "ggplot2"), 2), y_secondary.scientific = NULL, y_secondary.percent = FALSE, y_secondary.labels = NULL, category.labels = NULL, category.percent = FALSE, category.breaks = NULL, category.limits = NULL, category.expand = 0, category.midpoint = NULL, category.transform = "identity", category.date_breaks = NULL, category.date_labels = NULL, category.character = NULL, x.sort = NULL, category.sort = TRUE, facet.sort = TRUE, x.complete = NULL, category.complete = NULL, facet.complete = NULL, datalabels = TRUE, datalabels.round = ifelse(y.percent, 2, 1), datalabels.format = "%n", datalabels.colour = "grey25", datalabels.colour_fill = NULL, datalabels.size = (3 * text_factor), datalabels.angle = 0, datalabels.lineheight = 1, decimal.mark = dec_mark(), big.mark = big_mark(), summarise_function = base::sum, stacked = FALSE, stackedpercent = FALSE, horizontal = FALSE, reverse = horizontal, smooth = NULL, smooth.method = NULL, smooth.formula = NULL, smooth.se = TRUE, smooth.level = 0.95, smooth.alpha = 0.25, smooth.linewidth = 0.75, smooth.linetype = 3, smooth.colour = NULL, size = NULL, linetype = 1, linewidth = NULL, binwidth = NULL, width = NULL, jitter_seed = NA, violin_scale = "count", legend.position = NULL, legend.title = NULL, legend.reverse = FALSE, legend.barheight = 6, legend.barwidth = 1.5, legend.nbin = 300, legend.italic = FALSE, sankey.node_width = 0.15, sankey.node_whitespace = 0.03, sankey.alpha = 0.5, sankey.remove_axes = NULL, zoom = FALSE, sep = " / ", print = FALSE, text_factor = 1, font = getOption("plot2.font"), theme = getOption("plot2.theme", "theme_minimal2"), background = getOption("plot2.colour_background", "white"), markdown = TRUE, ... ) ## S3 method for class 'formula' plot2( .data = NULL, x = NULL, y = NULL, category = NULL, facet = NULL, type = NULL, x.title = TRUE, y.title = TRUE, category.title = NULL, title = NULL, subtitle = NULL, caption = NULL, tag = NULL, title.linelength = 60, title.colour = getOption("plot2.colour_font_primary", "black"), subtitle.linelength = 60, subtitle.colour = getOption("plot2.colour_font_secondary", "grey35"), na.replace = "", na.rm = FALSE, facet.position = "top", facet.fill = NULL, facet.bold = TRUE, facet.italic = FALSE, facet.size = 10, facet.margin = 8, facet.repeat_lbls_x = TRUE, facet.repeat_lbls_y = NULL, facet.fixed_y = NULL, facet.fixed_x = NULL, facet.drop = FALSE, facet.nrow = NULL, facet.relative = FALSE, x.date_breaks = NULL, x.date_labels = NULL, x.date_remove_years = NULL, category.focus = NULL, colour = getOption("plot2.colour", "ggplot2"), colour_fill = NULL, colour_opacity = 0, x.lbl_angle = 0, x.lbl_align = NULL, x.lbl_italic = FALSE, x.lbl_taxonomy = FALSE, x.remove = FALSE, x.position = "bottom", x.max_items = Inf, x.max_txt = "(rest, x%n)", category.max_items = Inf, category.max_txt = "(rest, x%n)", facet.max_items = Inf, facet.max_txt = "(rest, x%n)", x.breaks = NULL, x.n_breaks = NULL, x.transform = "identity", x.expand = NULL, x.limits = NULL, x.labels = NULL, x.character = NULL, x.drop = FALSE, x.mic = FALSE, x.zoom = FALSE, y.remove = FALSE, y.24h = FALSE, y.age = FALSE, y.scientific = NULL, y.percent = FALSE, y.percent_break = 0.1, y.breaks = NULL, y.n_breaks = NULL, y.limits = NULL, y.labels = NULL, y.expand = NULL, y.transform = "identity", y.position = "left", y.zoom = FALSE, y_secondary = NULL, y_secondary.type = type, y_secondary.title = TRUE, y_secondary.colour = get_colour(getOption("plot2.colour", "ggplot2"), 2), y_secondary.colour_fill = get_colour(getOption("plot2.colour", "ggplot2"), 2), y_secondary.scientific = NULL, y_secondary.percent = FALSE, y_secondary.labels = NULL, category.labels = NULL, category.percent = FALSE, category.breaks = NULL, category.limits = NULL, category.expand = 0, category.midpoint = NULL, category.transform = "identity", category.date_breaks = NULL, category.date_labels = NULL, category.character = NULL, x.sort = NULL, category.sort = TRUE, facet.sort = TRUE, x.complete = NULL, category.complete = NULL, facet.complete = NULL, datalabels = TRUE, datalabels.round = ifelse(y.percent, 2, 1), datalabels.format = "%n", datalabels.colour = "grey25", datalabels.colour_fill = NULL, datalabels.size = (3 * text_factor), datalabels.angle = 0, datalabels.lineheight = 1, decimal.mark = dec_mark(), big.mark = big_mark(), summarise_function = base::sum, stacked = FALSE, stackedpercent = FALSE, horizontal = FALSE, reverse = horizontal, smooth = NULL, smooth.method = NULL, smooth.formula = NULL, smooth.se = TRUE, smooth.level = 0.95, smooth.alpha = 0.25, smooth.linewidth = 0.75, smooth.linetype = 3, smooth.colour = NULL, size = NULL, linetype = 1, linewidth = NULL, binwidth = NULL, width = NULL, jitter_seed = NA, violin_scale = "count", legend.position = NULL, legend.title = NULL, legend.reverse = FALSE, legend.barheight = 6, legend.barwidth = 1.5, legend.nbin = 300, legend.italic = FALSE, sankey.node_width = 0.15, sankey.node_whitespace = 0.03, sankey.alpha = 0.5, sankey.remove_axes = NULL, zoom = FALSE, sep = " / ", print = FALSE, text_factor = 1, font = getOption("plot2.font"), theme = getOption("plot2.theme", "theme_minimal2"), background = getOption("plot2.colour_background", "white"), markdown = TRUE, data = NULL, ... ) ## S3 method for class 'freq' plot2( .data, x = .data$item, y = .data$count, category = NULL, facet = NULL, type = NULL, x.title = "Item", y.title = "Count", category.title = TRUE, title = NULL, subtitle = NULL, caption = NULL, tag = NULL, title.linelength = 60, title.colour = getOption("plot2.colour_font_primary", "black"), subtitle.linelength = 60, subtitle.colour = getOption("plot2.colour_font_secondary", "grey35"), na.replace = "", na.rm = FALSE, facet.position = "top", facet.fill = NULL, facet.bold = TRUE, facet.italic = FALSE, facet.size = 10, facet.margin = 8, facet.repeat_lbls_x = TRUE, facet.repeat_lbls_y = NULL, facet.fixed_y = NULL, facet.fixed_x = NULL, facet.drop = FALSE, facet.nrow = NULL, facet.relative = FALSE, x.date_breaks = NULL, x.date_labels = NULL, x.date_remove_years = NULL, category.focus = NULL, colour = getOption("plot2.colour", "ggplot2"), colour_fill = NULL, colour_opacity = 0, x.lbl_angle = 0, x.lbl_align = NULL, x.lbl_italic = FALSE, x.lbl_taxonomy = FALSE, x.remove = FALSE, x.position = "bottom", x.max_items = Inf, x.max_txt = "(rest, x%n)", category.max_items = Inf, category.max_txt = "(rest, x%n)", facet.max_items = Inf, facet.max_txt = "(rest, x%n)", x.breaks = NULL, x.n_breaks = NULL, x.transform = "identity", x.expand = NULL, x.limits = NULL, x.labels = NULL, x.character = NULL, x.drop = FALSE, x.mic = FALSE, x.zoom = FALSE, y.remove = FALSE, y.24h = FALSE, y.age = FALSE, y.scientific = NULL, y.percent = FALSE, y.percent_break = 0.1, y.breaks = NULL, y.n_breaks = NULL, y.limits = NULL, y.labels = NULL, y.expand = NULL, y.transform = "identity", y.position = "left", y.zoom = FALSE, y_secondary = NULL, y_secondary.type = type, y_secondary.title = TRUE, y_secondary.colour = get_colour(getOption("plot2.colour", "ggplot2"), 2), y_secondary.colour_fill = get_colour(getOption("plot2.colour", "ggplot2"), 2), y_secondary.scientific = NULL, y_secondary.percent = FALSE, y_secondary.labels = NULL, category.labels = NULL, category.percent = FALSE, category.breaks = NULL, category.limits = NULL, category.expand = 0, category.midpoint = NULL, category.transform = "identity", category.date_breaks = NULL, category.date_labels = NULL, category.character = NULL, x.sort = "freq-desc", category.sort = TRUE, facet.sort = TRUE, x.complete = NULL, category.complete = NULL, facet.complete = NULL, datalabels = TRUE, datalabels.round = ifelse(y.percent, 2, 1), datalabels.format = "%n", datalabels.colour = "grey25", datalabels.colour_fill = NULL, datalabels.size = (3 * text_factor), datalabels.angle = 0, datalabels.lineheight = 1, decimal.mark = dec_mark(), big.mark = big_mark(), summarise_function = base::sum, stacked = FALSE, stackedpercent = FALSE, horizontal = FALSE, reverse = horizontal, smooth = NULL, smooth.method = NULL, smooth.formula = NULL, smooth.se = TRUE, smooth.level = 0.95, smooth.alpha = 0.25, smooth.linewidth = 0.75, smooth.linetype = 3, smooth.colour = NULL, size = NULL, linetype = 1, linewidth = NULL, binwidth = NULL, width = NULL, jitter_seed = NA, violin_scale = "count", legend.position = NULL, legend.title = NULL, legend.reverse = FALSE, legend.barheight = 6, legend.barwidth = 1.5, legend.nbin = 300, legend.italic = FALSE, sankey.node_width = 0.15, sankey.node_whitespace = 0.03, sankey.alpha = 0.5, sankey.remove_axes = NULL, zoom = FALSE, sep = " / ", print = FALSE, text_factor = 1, font = getOption("plot2.font"), theme = getOption("plot2.theme", "theme_minimal2"), background = getOption("plot2.colour_background", "white"), markdown = TRUE, ... ) ## S3 method for class 'sf' plot2( .data, x = NULL, y = NULL, category = NULL, facet = NULL, type = NULL, x.title = FALSE, y.title = FALSE, category.title = NULL, title = NULL, subtitle = NULL, caption = NULL, tag = NULL, title.linelength = 60, title.colour = getOption("plot2.colour_font_primary", "black"), subtitle.linelength = 60, subtitle.colour = getOption("plot2.colour_font_secondary", "grey35"), na.replace = "", na.rm = FALSE, facet.position = "top", facet.fill = NULL, facet.bold = TRUE, facet.italic = FALSE, facet.size = 10, facet.margin = 8, facet.repeat_lbls_x = TRUE, facet.repeat_lbls_y = NULL, facet.fixed_y = NULL, facet.fixed_x = NULL, facet.drop = FALSE, facet.nrow = NULL, facet.relative = FALSE, x.date_breaks = NULL, x.date_labels = NULL, x.date_remove_years = NULL, category.focus = NULL, colour = getOption("plot2.colour_sf", "grey50"), colour_fill = getOption("plot2.colour_sf_fill", getOption("plot2.colour", "ggplot2")), colour_opacity = 0, x.lbl_angle = 0, x.lbl_align = NULL, x.lbl_italic = FALSE, x.lbl_taxonomy = FALSE, x.remove = FALSE, x.position = "bottom", x.max_items = Inf, x.max_txt = "(rest, x%n)", category.max_items = Inf, category.max_txt = "(rest, x%n)", facet.max_items = Inf, facet.max_txt = "(rest, x%n)", x.breaks = NULL, x.n_breaks = NULL, x.transform = "identity", x.expand = 0, x.limits = NULL, x.labels = NULL, x.character = NULL, x.drop = FALSE, x.mic = FALSE, x.zoom = FALSE, y.remove = FALSE, y.24h = FALSE, y.age = FALSE, y.scientific = NULL, y.percent = FALSE, y.percent_break = 0.1, y.breaks = NULL, y.n_breaks = NULL, y.limits = NULL, y.labels = NULL, y.expand = 0, y.transform = "identity", y.position = "left", y.zoom = FALSE, y_secondary = NULL, y_secondary.type = type, y_secondary.title = TRUE, y_secondary.colour = get_colour(getOption("plot2.colour", "ggplot2"), 2), y_secondary.colour_fill = get_colour(getOption("plot2.colour", "ggplot2"), 2), y_secondary.scientific = NULL, y_secondary.percent = FALSE, y_secondary.labels = NULL, category.labels = NULL, category.percent = FALSE, category.breaks = NULL, category.limits = NULL, category.expand = 0, category.midpoint = NULL, category.transform = "identity", category.date_breaks = NULL, category.date_labels = NULL, category.character = NULL, x.sort = NULL, category.sort = TRUE, facet.sort = TRUE, x.complete = NULL, category.complete = NULL, facet.complete = NULL, datalabels = TRUE, datalabels.round = ifelse(y.percent, 2, 1), datalabels.format = NULL, datalabels.colour = "black", datalabels.colour_fill = NULL, datalabels.size = (3 * text_factor), datalabels.angle = 0, datalabels.lineheight = 1, decimal.mark = dec_mark(), big.mark = big_mark(), summarise_function = base::sum, stacked = FALSE, stackedpercent = FALSE, horizontal = FALSE, reverse = horizontal, smooth = NULL, smooth.method = NULL, smooth.formula = NULL, smooth.se = TRUE, smooth.level = 0.95, smooth.alpha = 0.25, smooth.linewidth = 0.75, smooth.linetype = 3, smooth.colour = NULL, size = NULL, linetype = 1, linewidth = NULL, binwidth = NULL, width = NULL, jitter_seed = NA, violin_scale = "count", legend.position = "right", legend.title = NULL, legend.reverse = FALSE, legend.barheight = 6, legend.barwidth = 1.5, legend.nbin = 300, legend.italic = FALSE, sankey.node_width = 0.15, sankey.node_whitespace = 0.03, sankey.alpha = 0.5, sankey.remove_axes = NULL, zoom = FALSE, sep = " / ", print = FALSE, text_factor = 1, font = getOption("plot2.font"), theme = theme_minimal2(panel.grid.major = element_blank(), panel.grid.minor = element_blank(), panel.border = element_blank(), plot.margin = unit(c(5, 5, 0, 0), units = "pt"), axis.title = element_blank(), axis.text = element_blank(), axis.line = element_blank(), axis.ticks = element_blank()), background = getOption("plot2.colour_background", "white"), markdown = TRUE, data = NULL, crs = NULL, datalabels.centroid = NULL, ... ) ## S3 method for class 'data.frame' plot2( .data, x = NULL, y = NULL, category = NULL, facet = NULL, type = NULL, x.title = TRUE, y.title = TRUE, category.title = NULL, title = NULL, subtitle = NULL, caption = NULL, tag = NULL, title.linelength = 60, title.colour = getOption("plot2.colour_font_primary", "black"), subtitle.linelength = 60, subtitle.colour = getOption("plot2.colour_font_secondary", "grey35"), na.replace = "", na.rm = FALSE, facet.position = "top", facet.fill = NULL, facet.bold = TRUE, facet.italic = FALSE, facet.size = 10, facet.margin = 8, facet.repeat_lbls_x = TRUE, facet.repeat_lbls_y = NULL, facet.fixed_y = NULL, facet.fixed_x = NULL, facet.drop = FALSE, facet.nrow = NULL, facet.relative = FALSE, x.date_breaks = NULL, x.date_labels = NULL, x.date_remove_years = NULL, category.focus = NULL, colour = getOption("plot2.colour", "ggplot2"), colour_fill = NULL, colour_opacity = 0, x.lbl_angle = 0, x.lbl_align = NULL, x.lbl_italic = FALSE, x.lbl_taxonomy = FALSE, x.remove = FALSE, x.position = "bottom", x.max_items = Inf, x.max_txt = "(rest, x%n)", category.max_items = Inf, category.max_txt = "(rest, x%n)", facet.max_items = Inf, facet.max_txt = "(rest, x%n)", x.breaks = NULL, x.n_breaks = NULL, x.transform = "identity", x.expand = NULL, x.limits = NULL, x.labels = NULL, x.character = NULL, x.drop = FALSE, x.mic = FALSE, x.zoom = FALSE, y.remove = FALSE, y.24h = FALSE, y.age = FALSE, y.scientific = NULL, y.percent = FALSE, y.percent_break = 0.1, y.breaks = NULL, y.n_breaks = NULL, y.limits = NULL, y.labels = NULL, y.expand = NULL, y.transform = "identity", y.position = "left", y.zoom = FALSE, y_secondary = NULL, y_secondary.type = type, y_secondary.title = TRUE, y_secondary.colour = get_colour(getOption("plot2.colour", "ggplot2"), 2), y_secondary.colour_fill = get_colour(getOption("plot2.colour", "ggplot2"), 2), y_secondary.scientific = NULL, y_secondary.percent = FALSE, y_secondary.labels = NULL, category.labels = NULL, category.percent = FALSE, category.breaks = NULL, category.limits = NULL, category.expand = 0, category.midpoint = NULL, category.transform = "identity", category.date_breaks = NULL, category.date_labels = NULL, category.character = NULL, x.sort = NULL, category.sort = TRUE, facet.sort = TRUE, x.complete = NULL, category.complete = NULL, facet.complete = NULL, datalabels = TRUE, datalabels.round = ifelse(y.percent, 2, 1), datalabels.format = "%n", datalabels.colour = "grey25", datalabels.colour_fill = NULL, datalabels.size = (3 * text_factor), datalabels.angle = 0, datalabels.lineheight = 1, decimal.mark = dec_mark(), big.mark = big_mark(), summarise_function = base::sum, stacked = FALSE, stackedpercent = FALSE, horizontal = FALSE, reverse = horizontal, smooth = NULL, smooth.method = NULL, smooth.formula = NULL, smooth.se = TRUE, smooth.level = 0.95, smooth.alpha = 0.25, smooth.linewidth = 0.75, smooth.linetype = 3, smooth.colour = NULL, size = NULL, linetype = 1, linewidth = NULL, binwidth = NULL, width = NULL, jitter_seed = NA, violin_scale = "count", legend.position = NULL, legend.title = NULL, legend.reverse = FALSE, legend.barheight = 6, legend.barwidth = 1.5, legend.nbin = 300, legend.italic = FALSE, sankey.node_width = 0.15, sankey.node_whitespace = 0.03, sankey.alpha = 0.5, sankey.remove_axes = NULL, zoom = FALSE, sep = " / ", print = FALSE, text_factor = 1, font = getOption("plot2.font"), theme = getOption("plot2.theme", "theme_minimal2"), background = getOption("plot2.colour_background", "white"), markdown = TRUE, ... ) ## S3 method for class 'matrix' plot2( .data, x = NULL, y = NULL, category = NULL, facet = NULL, type = NULL, x.title = FALSE, y.title = FALSE, category.title = NULL, title = NULL, subtitle = NULL, caption = NULL, tag = NULL, title.linelength = 60, title.colour = getOption("plot2.colour_font_primary", "black"), subtitle.linelength = 60, subtitle.colour = getOption("plot2.colour_font_secondary", "grey35"), na.replace = "", na.rm = FALSE, facet.position = "top", facet.fill = NULL, facet.bold = TRUE, facet.italic = FALSE, facet.size = 10, facet.margin = 8, facet.repeat_lbls_x = TRUE, facet.repeat_lbls_y = NULL, facet.fixed_y = NULL, facet.fixed_x = NULL, facet.drop = FALSE, facet.nrow = NULL, facet.relative = FALSE, x.date_breaks = NULL, x.date_labels = NULL, x.date_remove_years = NULL, category.focus = NULL, colour = getOption("plot2.colour", "ggplot2"), colour_fill = NULL, colour_opacity = 0, x.lbl_angle = 0, x.lbl_align = NULL, x.lbl_italic = FALSE, x.lbl_taxonomy = FALSE, x.remove = FALSE, x.position = "bottom", x.max_items = Inf, x.max_txt = "(rest, x%n)", category.max_items = Inf, category.max_txt = "(rest, x%n)", facet.max_items = Inf, facet.max_txt = "(rest, x%n)", x.breaks = NULL, x.n_breaks = NULL, x.transform = "identity", x.expand = NULL, x.limits = NULL, x.labels = NULL, x.character = NULL, x.drop = FALSE, x.mic = FALSE, x.zoom = FALSE, y.remove = FALSE, y.24h = FALSE, y.age = FALSE, y.scientific = NULL, y.percent = FALSE, y.percent_break = 0.1, y.breaks = NULL, y.n_breaks = NULL, y.limits = NULL, y.labels = NULL, y.expand = NULL, y.transform = "identity", y.position = "left", y.zoom = FALSE, y_secondary = NULL, y_secondary.type = type, y_secondary.title = TRUE, y_secondary.colour = get_colour(getOption("plot2.colour", "ggplot2"), 2), y_secondary.colour_fill = get_colour(getOption("plot2.colour", "ggplot2"), 2), y_secondary.scientific = NULL, y_secondary.percent = FALSE, y_secondary.labels = NULL, category.labels = NULL, category.percent = FALSE, category.breaks = NULL, category.limits = NULL, category.expand = 0, category.midpoint = NULL, category.transform = "identity", category.date_breaks = NULL, category.date_labels = NULL, category.character = NULL, x.sort = NULL, category.sort = TRUE, facet.sort = TRUE, x.complete = NULL, category.complete = NULL, facet.complete = NULL, datalabels = TRUE, datalabels.round = ifelse(y.percent, 2, 1), datalabels.format = "%n", datalabels.colour = "grey25", datalabels.colour_fill = NULL, datalabels.size = (3 * text_factor), datalabels.angle = 0, datalabels.lineheight = 1, decimal.mark = dec_mark(), big.mark = big_mark(), summarise_function = base::sum, stacked = FALSE, stackedpercent = FALSE, horizontal = FALSE, reverse = horizontal, smooth = NULL, smooth.method = NULL, smooth.formula = NULL, smooth.se = TRUE, smooth.level = 0.95, smooth.alpha = 0.25, smooth.linewidth = 0.75, smooth.linetype = 3, smooth.colour = NULL, size = NULL, linetype = 1, linewidth = NULL, binwidth = NULL, width = NULL, jitter_seed = NA, violin_scale = "count", legend.position = NULL, legend.title = NULL, legend.reverse = FALSE, legend.barheight = 6, legend.barwidth = 1.5, legend.nbin = 300, legend.italic = FALSE, sankey.node_width = 0.15, sankey.node_whitespace = 0.03, sankey.alpha = 0.5, sankey.remove_axes = NULL, zoom = FALSE, sep = " / ", print = FALSE, text_factor = 1, font = getOption("plot2.font"), theme = getOption("plot2.theme", "theme_minimal2"), background = getOption("plot2.colour_background", "white"), markdown = TRUE, ... )
.data , data
|
data to plot |
x |
plotting 'direction' for the x axis. This can be:
|
y |
values to use for plotting along the y axis. This can be:
|
category , facet
|
plotting 'direction' (
The |
type , y_secondary.type
|
type of visualisation to use. This can be:
|
title , subtitle , caption , tag , x.title , y.title , category.title , legend.title , y_secondary.title
|
a title to use. This can be:
The |
title.linelength |
maximum number of characters per line in the title, before a linebreak occurs |
title.colour |
text colour of the title |
subtitle.linelength |
maximum number of characters per line in the subtitle, before a linebreak occurs |
subtitle.colour |
text colour of the subtitle |
na.replace |
character to put in place of |
na.rm |
remove |
facet.position , facet.fill , facet.bold , facet.italic , facet.size , facet.margin , facet.repeat_lbls_x , facet.repeat_lbls_y , facet.drop , facet.nrow , facet.relative
|
additional settings for the plotting direction |
facet.fixed_y |
a logical to indicate whether all y scales should have the same limits. Defaults to |
facet.fixed_x |
a logical to indicate whether all x scales should have the same breaks. This acts like the inverse of |
x.date_breaks |
breaks to use when the x axis contains dates, will be determined automatically if left blank. This accepts values such as |
x.date_labels |
labels to use when the x axis contains dates, will be determined automatically if left blank. This accepts 'Excel' date-language such as |
x.date_remove_years |
a logical to indicate whether the years of all |
category.focus |
a value of |
colour |
get_colour(s) to set, will be evaluated with |
colour_fill |
get_colour(s) to be used for filling, will be determined automatically if left blank and will be evaluated with |
colour_opacity |
amount of opacity for |
x.lbl_angle |
angle to use for the x axis in a counter-clockwise direction (i.e., a value of |
x.lbl_align |
alignment for the x axis between |
x.lbl_italic |
logical to indicate whether the x labels should in in italics |
x.lbl_taxonomy |
a logical to transform all words of the |
x.remove , y.remove
|
a logical to indicate whether the axis labels and title should be removed |
x.position , y.position
|
position of the axis |
x.max_items , category.max_items , facet.max_items
|
number of maximum items to use, defaults to infinite. All other values will be grouped and summarised using the |
x.max_txt , category.max_txt , facet.max_txt
|
the text to use of values not included number of |
x.breaks , y.breaks
|
a breaks function or numeric vector to use for the axis |
x.n_breaks , y.n_breaks
|
number of breaks, only useful if |
x.transform , y.transform , category.transform
|
a transformation function to use, e.g. |
x.expand , y.expand
|
expansion to use for the axis, can be length 1 or 2. |
x.limits , y.limits
|
limits to use for the axis, can be length 1 or 2. Use |
x.labels , y.labels , y_secondary.labels
|
a labels function or character vector to use for the axis |
x.character |
a logical to indicate whether the values of the x axis should be forced to character. The default is |
x.drop |
logical to indicate whether factor levels should be dropped |
x.mic |
logical to indicate whether the x axis should be formatted as MIC values, by dropping all factor levels and adding missing factors of 2 |
x.zoom , y.zoom
|
a logical to indicate if the axis should be zoomed on the data, by setting |
y.24h |
a logical to indicate whether the y labels and breaks should be formatted as 24-hour sequences |
y.age |
a logical to indicate whether the y labels and breaks should be formatted as ages in years |
y.scientific , y_secondary.scientific
|
a logical to indicate whether the y labels should be formatted in scientific notation. Defaults to |
y.percent , y_secondary.percent
|
a logical to indicate whether the y labels should be formatted as percentages |
y.percent_break |
a value on which the y axis should have breaks |
y_secondary |
values to use for plotting along the secondary y axis. This functionality is poorly supported by |
y_secondary.colour , y_secondary.colour_fill
|
colours to set for the secondary y axis, will be evaluated with |
category.labels , category.percent , category.breaks , category.expand , category.midpoint
|
settings for the plotting direction |
category.limits |
limits to use for a numeric category, can be length 1 or 2. Use |
category.date_breaks |
breaks to use when the category contains dates, will be determined automatically if left blank. This will be passed on to |
category.date_labels |
labels to use when the category contains dates, will be determined automatically if left blank. This accepts 'Excel' date-language such as |
category.character |
a logical to indicate whether the values of the category should be forced to character. The default is |
x.sort , category.sort , facet.sort
|
sorting of the plotting direction, defaults to
|
x.complete , category.complete , facet.complete
|
a value to complete the data. This makes use of |
datalabels |
values to show as datalabels, see also
|
datalabels.round |
number of digits to round the datalabels, applies to both |
datalabels.format |
format to use for datalabels. This can be a function (such as |
datalabels.colour , datalabels.colour_fill , datalabels.size , datalabels.angle , datalabels.lineheight
|
settings for the datalabels |
decimal.mark |
decimal mark, defaults to |
big.mark |
thousands separator, defaults to |
summarise_function |
a function to use if the data has to be summarised, see Examples. This can also be |
stacked |
a logical to indicate that values must be stacked |
stackedpercent |
a logical to indicate that values must be 100% stacked |
horizontal |
a logical to turn the plot 90 degrees using |
reverse |
a logical to reverse the values of |
smooth |
a logical to add a smooth. In histograms, this will add the density count as an overlaying line (default: |
smooth.method , smooth.formula , smooth.se , smooth.level , smooth.alpha , smooth.linewidth , smooth.linetype , smooth.colour
|
settings for |
size |
size of the geom. Defaults to |
linetype |
linetype of the geom, only suitable for geoms that draw lines. Defaults to 1. |
linewidth |
linewidth of the geom, only suitable for geoms that draw lines. Defaults to: |
binwidth |
width of bins (only useful for |
width |
width of the geom. Defaults to |
jitter_seed |
seed (randomisation factor) to be set when using |
violin_scale |
scale to be set when using |
legend.position |
position of the legend, must be |
legend.reverse , legend.barheight , legend.barwidth , legend.nbin , legend.italic
|
other settings for the legend |
sankey.node_width |
width of the vertical nodes in a Sankey plot (i.e., when |
sankey.node_whitespace |
whitespace between the nodes |
sankey.alpha |
alpha of the flows in a Sankey plot (i.e., when |
sankey.remove_axes |
logical to indicate whether all axes must be removed in a Sankey plot (i.e., when |
zoom |
a logical to indicate if the plot should be scaled to the data, i.e., not having the x and y axes to start at 0. This will set |
sep |
separator character to use if multiple columns are given to either of the three directions: |
print |
a logical to indicate if the result should be printed instead of just returned |
text_factor |
text factor to use, which will apply to all texts shown in the plot |
font |
font (family) to use, can be set with |
theme |
a valid |
background |
the background colour of the entire plot, can also be |
markdown |
a logical to turn all labels and titles into plotmath expressions, by converting common markdown language using the |
... |
any argument to give to the geom. This will override automatically-set settings for the geom. |
crs |
the coordinate reference system (CRS) to use. If this is not left blank, |
datalabels.centroid |
a logical to indicate whether datalabels must be centred on the polygon (using |
For geographic information system (GIS) analysis, use the sf
package with a data set containing geometries. The result can be used as input for plot2()
.
This ggplot2
theme provides even more white area and less clutter than theme_minimal()
.
theme_minimal2( ..., colour_font_primary = getOption("plot2.colour_font_primary", "black"), colour_font_secondary = getOption("plot2.colour_font_secondary", "grey35"), colour_font_axis = getOption("plot2.colour_font_axis", "grey25"), colour_background = getOption("plot2.colour_background", "white") )
theme_minimal2( ..., colour_font_primary = getOption("plot2.colour_font_primary", "black"), colour_font_secondary = getOption("plot2.colour_font_secondary", "grey35"), colour_font_axis = getOption("plot2.colour_font_axis", "grey25"), colour_background = getOption("plot2.colour_background", "white") )
... |
arguments passed on to |
colour_font_primary |
colour to set for the plot title and tag |
colour_font_secondary |
colour to set for the plot subtitle and caption |
colour_font_axis |
colour to set for the axis titles on both x and y |
colour_background |
colour to set for the background |
library(ggplot2) ggplot(mtcars, aes(hp, mpg)) + geom_point() ggplot(mtcars, aes(hp, mpg)) + geom_point() + theme_minimal2() # in plot2(), the 'theme' argument defaults to theme_minimal2(): mtcars |> plot2(hp, mpg) # set to NULL to use the ggplot2 default: mtcars |> plot2(hp, mpg, theme = NULL)
library(ggplot2) ggplot(mtcars, aes(hp, mpg)) + geom_point() ggplot(mtcars, aes(hp, mpg)) + geom_point() + theme_minimal2() # in plot2(), the 'theme' argument defaults to theme_minimal2(): mtcars |> plot2(hp, mpg) # set to NULL to use the ggplot2 default: mtcars |> plot2(hp, mpg, theme = NULL)